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Problem to solve: Outages

Observed Outages to the Bulk Electric System, 1992-2012 FIGURE 1 US. Electric Grid Disruptions
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1 992 1 996 2000 2 004 2008 20 1 2 The Department of Energy tracks major electric disturbance events through Form OE-417. Utilities submit information about qualifying

incidents, including when they occurred, where they occurred, what triggered them, and how many customers were affected. Notably, while the
reported number of non-weather-related events is high, the vast majority of incidents resulting in customer outages occur because of weather.

Source: Energy Information Administration

SOURCE: UCS ANALYSIS, BASED ON OE N.D. © Union of Concerned Scientists 2015; www.ucsusa.org/ lightsout

IEEE fﬁ @ I E E E
SMARTGRID




Major Outage Causes

Major causes of power out;ges in the U.S.
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What causes our power outages?
2015 5-yr. average
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Insulator Deterioration Over Time
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*A. Tzimas, et al. "Asset management frameworks for outdoor composite insulators." IEEE @ I E E E
IEEE Transactions on Dielectrics and Electrical Insulation 19.6 (2012). 4
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Dynamic Vegetation Management

Enviromental Impacts:
precipitation, wind,

temperature, humidity,
lightning
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Sources of Big Data
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Weather Data
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Big Data Properties: Examples

Data Class Data Source VOLUME VELOCITY VERACITY
(Measurements) (Data file size) (Rate of use) (Accuracy)
Ultility SM 120GB per day Every 5-15 min error <2.5%
\" measurements PMU 30GB per day 240 samples/sec error <1%
ICM 5GB per day 250 samples/sec error <1%
A DFR 10MB per fault 1600 samples/sec error <0.2%
R Weather data Radar 612 MB/day per Every 4-10 min 1-2dB; ms!
radar scan
| Satellite At least 10 GB Every 1-15 min VIS<2%; IR<1-2K
per day
E ASOS 10 MB/day per Every 1 min T-1.8°F, P<1%, Wind speed -
station 5%, RR - 4%
T NLDN 40 MB/day During lightning SE < 200m, PCE <15%
WFM 5-10 GB/day per | 15min- 12 hours Varies by parameter
Y model
Vegetation and TPWD EMST 2.7 GB for Texas | static SE<10m
Topography TNRIS 300 GB for Texas | static SE<1m
LIDAR 7 GB for Harris static HE <1m, VE <150 cm
Co.
SM — Smart Meter; PMU — Phasor Measurement Unit; ICM — Intelligent Condition Monitor (includes Intelligent Transformer Monitor — ITM, Circuit
Breaker Condition Monitor — BCM, etc.); DFR — Digital Fault Recorder; Radar - Radio Detection and Ranging; Satellite - Geostationary and Polar-
Orbiting Meteorological Spacecraft; ASOS - Automated Surface Observing System; NLDN — National Lightning Detection Network; WFM — Weather
Forecast Model; TPWD EMST - Texas Parks & Wildlife Department - Ecological Mapping Systems of Texas; TNRIS - Texas Natural Resources
Information System; LIDAR - Light Detection and Ranging.
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Big Data Properties: Temporal
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Challenges: Define Solutions
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Challenges: Reduce Economic Loss

Annual BUSineSS LOSSGS frOm Grld PrObIemS The real victim of power outages are businesses in general

US$’000 (2010); average cost of one hour power interruption in the US
per type of customer

Primen Study: $1508 annually for power outages and quality issues
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Challenges: Predict Risk

U. S. Disaster Avoidance Map

U.S. DISASTER
AVCIDANCE MAP

IEEE // ﬁi:_:.
s MARTG R | D Advanci:;i ﬁﬂﬂ;ﬂy




- d
Opportunities: Define Risk

Risk = Hazard x Vulnerabillity x Impacts

Intensity T — Threat Intensity
Hazard — Probability of a threat with intensity T

Vulnerability — Probability of a consequence C if
threat with intensity T occurred

Impacts— Estimated economic and/or social impacts
If consequence C has occurred
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Example 1: Insulator Risk Model

Hazard » Vulnerability » Risk %

Economic
Risk

M. Kezunovic, T. Djokic, P-C. Chen, “"Big Data Uses for Risk Assessment in Predictive
Outage and Asset Management,” CIGRE Symposium, Ireland, May, 2017

IEEE /’ﬁ M. Kezunovic, T. Djokic, “Predictive Asset Management Under Weather Impacts EEE

SMARTGRID Using Big Data, Spatiotemporal Data Analytics and Risk Based Decision-Making, Advancing Technology
IREP, Portugal, August 2017 for Humanity
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New Data Analytics

Risk = Hazard x Vulnerability x Economic Impact
R = P[T] - P[C|T] - u(C)

Intensity T — Lightning peak current

Hazard — Probability of a lightning strike with intensity T

Vulnerability — Probability of a insulation breakdown for
a given intensity of lightning strike

Economic Impact — Estimated losses in case of
iInsulation breakdown (cost of maintenance and
operation downtime)
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BD use in Modeling the Insulator BIL

Conventional method

BIL determined by insulator
manufacturer.

Probability of a Flasho

—

BIL
Voltage [kV]

Insulator breakdown probability
determined statistically.

Economic impact not taken into
account.
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BD approach

Manufacturers standard BIL used only as a
initial value. Standard BIL changes during
the insulator lifetime.

® P o o
nD N w b
T T T T

Probability of a Flashover
e o o

e o
Y

I

BIL_new

Insulator breakdown probability determined
based on spatio-temporally referenced
historical data and real-time weather
forecast using data mining.

Risk model includes economic impact in
case of insulator breakdown.
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Data Integration

TEMPORAL SPATIAL
Lightning Weather Traveling Insulation Geography
Detection Wave Fault | Coordination
Network Locators Studies
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and longitude) line terminals ground wire the line
Peak current Relative Transient signals | Footing resistance | Location of towers
and lightning humidity recorded at the

strike polarity line terminals
Type of lightning | Precipitation Historical Standard BIL Location of surge
strike (cloud to 0utage Data arresters
cloud or cloud to
ground) Lightning/Thunde | Insulator New BIL after Location of land-
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(Forecast) lightning impact stations
Black — Used in conventional insulation coordination
Red — Additional data used in BD method
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Prediction Model
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Result: Risk Map

Risk on January 15t 2009 Risk on December 31st 2014
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Example 2: Vegetation Risk Model

Hazard » Vulnerability— Risk
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P. C. Chen and M. Kezunovic, “Fuzzy Logic Approach to Predictive Risk
Analysis in Distribution Outage Management”, IEEE Transactions on Smart
Grid, vol. 7, no. 6, pp. 2827-2836, November 2016.

|EEE % T. Dokic, P.-C. Chen, M. Kezunovic, “Risk Analysis for Assessment of Vegetation

Impact on Outages in Electric Power Systems", CIGRE US National Committee Advancing Technology
SMARTGR'D 2016 Grid of the Future Symposium, Philadelphia, PA, October-November 2016. for Humanity



http://smartgridcenter.tamu.edu/resume/pdf/cnf/Dokic_CIRGE16.pdf
http://smartgridcenter.tamu.edu/resume/pdf/j/PCC-2016Nov.pdf
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New Data Analytics

Risk = Hazard x Vulnerability x Economic Impact
R = P[T] - P[C|T] - u(C)

Intensity T — Wind Speed and Direction, Precipitation,
Temperature

Hazard — Probability of a weather conditions with intensity
T

Vulnerability — Probability of a tree or a tree branch coming
In contact with lines for a given weather hazard

Economic Impact — Estimated losses in case of an outage
(cost of maintenance and operation downtime)
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BD Use in modeling weather
Impacts
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Spatial Correlation of Data
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Result: Risk Maps
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ID | Zone Order for Tree Trimming Schedule Average Risk Reduction [%] Economic Impact Reduction
1 12,1,21,22,13,24,2,3,10,19,11,5,6,18,4,23 32.18 0.39
2 12,1,13,24, 31.98 0.43

21,22,2,3,10,19,11,5,6,18,4,23
3 1,12,21,22,10,19,11,5,13,24,2,23,3,6,18,4 26.14 0.28
4 12,1,24,13, 23.84 0.25
2,3,10,21,11,5,6,18,4,22,19,23
5 1,12,21,22,24,13,3,10,2,19,6,4,11,5,23,18 20.89 0.26
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Conclusions

= The solutions have to offer predictive
estimates of risk

= Mitigation of risks results in optimized
schedules for asset and outage management

= Managing assets and outages requires
spatiotemporal framework

= The data analytics has to be flexible to reflect
different spatial and temporal scales

= The Big Data uses created big expectations
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