Big Data Paradigm for Risk-Based Predictive Asset and Outage Management

M. Kezunovic Life Fellow, IEEE Regents Professor Director, Smart Grid Center Texas A&M University

Outline

- Problems to Solve and Expectations
- Sources and Properties of Big Data
- Challenges and Opportunities
- Examples:
 - Asset Management
 - Outage Management
- Conclusions

Problem to solve: Outages

Source: Energy Information Administration

FIGURE 1. U.S. Electric Grid Disruptions

The Department of Energy tracks major electric disturbance events through Form OE-417. Utilities submit information about qualifying incidents, including when they occurred, where they occurred, what triggered them, and how many customers were affected. Notably, while the reported number of non-weather-related events is high, the vast majority of incidents resulting in customer outages occur because of weather.

SOURCE: UCS ANALYSIS, BASED ON OE N.D.

© Union of Concerned Scientists 2015; www.ucsusa.org/lightsout

Major Outage Causes

Major causes of power outages in the U.S.

light and Power Company

Advancing Technology for Humanity

Insulator Deterioration Over Time

*A. Tzimas, et al. "Asset management frameworks for outdoor composite insulators." IEEE Transactions on Dielectrics and Electrical Insulation 19.6 (2012).

Advancing Technology for Humanity

Dynamic Vegetation Management

IEEE

Advancing Technology for Humanity

Spatio-Temporal Predictive Model

Outline

- Problems to Solve and Expectations
- Sources and Properties of Big Data
- Challenges and Opportunities
- Exemples:
 - Asset Management
 - Outage Management
- Conclusions

Sources of Big Data

Vegetation Indices

GIS

UAS

Network Assets Data

Weather Data

Weather Station

Radar

Satellite

National Digital Forecast Database (NDFD)

Example: Apparent Temperature Data download: every 3 hours Forecast for next 3 days Data resolution: 3 hours

Big Data Properties: Examples

	Data Class	Data Source	VOLUME	VELOCITY	VERACITY		
		(Measurements)	(Data file size)	(Rate of use)	(Accuracy)		
	Utility	SM	120GB per day	Every 5-15 min	error <2.5%		
V	measurements	PMU	30GB per day	240 samples/sec	error <1%		
		ICM	5GB per day	250 samples/sec	error <1%		
A		DFR	10MB per fault	1600 samples/sec	error <0.2%		
R	Weather data	Radar	612 MB/day per radar scan	Every 4-10 min	1-2 dB; m s ⁻¹		
		Satellite	At least 10 GB per day	Every 1-15 min	VIS<2%; IR<1-2K		
E		ASOS	10 MB/day per station	Every 1 min	T-1.8°F, P<1%, Wind speed - 5%, RR - 4%		
1		NLDN	40 MB/day	During lightning	SE < 200m, PCE <15%		
Y		WFM	5-10 GB/day per model	15min - 12 hours	Varies by parameter		
	Vegetation and	TPWD EMST	2.7 GB for Texas	static	SE < 10 m		
	Topography	TNRIS	300 GB for Texas	static	SE < 1 m		
		LIDAR	7 GB for Harris Co.	static	HE < 1m, VE < 150 cm		
SM – Smart Meter; PMU – Phasor Measurement Unit; ICM – Intelligent Condition Monitor (includes Intelligent Transformer Monitor – ITM, Circuit Breaker Condition Monitor – BCM, etc.); DFR – Digital Fault Recorder; Radar - Radio Detection and Ranging; Satellite - Geostationary and Polar- Orbiting Meteorological Spacecraft; ASOS - Automated Surface Observing System; NLDN – National Lightning Detection Network; WFM – Weather Forecast Model; TPWD EMST - Texas Parks & Wildlife Department - Ecological Mapping Systems of Texas; TNRIS - Texas Natural Resources							

Information System; LIDAR - Light Detection and Ranging.

Big Data Properties: Temporal

Outline

- Problems to Solve and Expectations
- Sources and Properties of Big Data
- Challenges and Opportunities
- Exemples:
 - Asset Management
 - Outage Management
- Conclusions

Challenges: Define Solutions

Challenges: Reduce Economic Loss

Annual Business Losses from Grid Problems

Primen Study: \$150B annually for power outages and quality issues

Billions of 2012 \$

80

The real victim of power outages are businesses in general

US\$'000 (2010); average cost of one hour power interruption in the US per type of customer

Source: US Department of Energy.

Challenges: Predict Risk

Opportunities: Define Risk

Risk = Hazard x Vulnerability x Impacts

Intensity T – Threat Intensity

Hazard – Probability of a threat with intensity T

Vulnerability - Probability of a consequence C if threat with intensity T occurred

Impacts– Estimated economic and/or social impacts if consequence C has occurred

Outline

- Problems to Solve and Expectations
- Sources and Properties of Big Data
- Challenges and Opportunities
- Examples:
 - Asset Management
 - Outage Management
- Conclusions

M. Kezunovic, Z. Obradovic, T. Dokic, B. Zhang, J. Stojanovic, P. Dehghanian, and P. -C. Chen, <u>"Predicating Spatiotemporal Impacts of Weather on Power</u> <u>Systems using Big Data Science,"</u> Springer Verlag, Data Science and Big Data: An Environment of Computational Intelligence, Pedrycz, Witold, Chen, Shyi-Ming (Eds.), ISBN 978-3-319-53474-9, 2017.

M. Kezunovic, T. Djokic, P-C. Chen, "<u>Big Data Uses for Risk Assessment in Predictive</u> <u>Outage and Asset Management</u>," CIGRE Symposium, Ireland, May, 2017

M. Kezunovic, T. Djokic, "Predictive Asset Management Under Weather Impacts Using Big Data, Spatiotemporal Data Analytics and Risk Based Decision-Making, IREP, Portugal, August 2017

New Data Analytics

Risk = Hazard x Vulnerability x Economic Impact

$R = P[T] \cdot P[C|T] \cdot u(C)$

Intensity T – Lightning peak current

Hazard – Probability of a lightning strike with intensity T

Vulnerability – Probability of a insulation breakdown for a given intensity of lightning strike

Economic Impact – Estimated losses in case of insulation breakdown (cost of maintenance and operation downtime)

BD use in Modeling the Insulator **BIL**

Conventional method

BIL determined by insulator manufacturer.

- Insulator breakdown probability determined statistically.
- Economic impact not taken into account.

BD approach

 Manufacturers standard BIL used only as a initial value. Standard BIL changes during the insulator lifetime.

- Insulator breakdown probability determined based on spatio-temporally referenced historical data and real-time weather forecast using data mining.
- Risk model includes economic impact in case of insulator breakdown.

Data Integration

Л	EMPORA	SPATIAL		
Lightning Detection	Weather	Traveling Wave Fault	Insulation Coordination	Geography
Date and time of lightning strike	Temperature	Date and time when event was recorded	Surge impedances of towers	Location of substations
Location of a strike (latitude and longitude)	Atmospheric pressure	Distance to the fault from the line terminals	Surge impedances of ground wire	Geographical representation of the line
Peak current and lightning strike polarity	Relative humidity	Transient signals recorded at the line terminals	Footing resistance	Location of towers
Type of lightning strike (cloud to cloud or cloud to	Precipitation	Historical Outage Data	Standard BIL	Location of surge arresters
ground)	Lightning/Thunde rstorm Probability (Forecast)	Insulator breakdown history	New BIL after accumulated lightning impact	Location of land- based weather stations

Black – Used in conventional insulation coordination Red – Additional data used in BD method

Prediction Model

23

for Humanity

Result: Risk Map

Risk on January 1st 2009

Risk on December 31st 2014

Risk on January 5th 2015 (Prediction)

Example 2: Vegetation Risk Model

P. C. Chen and M. Kezunovic, "Fuzzy Logic Approach to Predictive Risk Analysis in Distribution Outage Management", *IEEE Transactions on Smart Grid*, vol. 7, no. 6, pp. 2827-2836, November 2016.

T. Dokic, P.-C. Chen, M. Kezunovic, "<u>Risk Analysis for Assessment of Vegetation</u> <u>Impact on Outages in Electric Power Systems</u>", CIGRE US National Committee 2016 Grid of the Future Symposium, Philadelphia, PA, October-November 2016.

New Data Analytics

Risk = Hazard x Vulnerability x Economic Impact

$R = P[T] \cdot P[C|T] \cdot u(C)$

Intensity T – Wind Speed and Direction, Precipitation, Temperature

Hazard – Probability of a weather conditions with intensity T

Vulnerability – Probability of a tree or a tree branch coming in contact with lines for a given weather hazard

Economic Impact – Estimated losses in case of an outage (cost of maintenance and operation downtime)

BD Use in modeling weather Impacts

Spatial Correlation of Data

Result: Risk Maps

ID	Zone Order for Tree Trimming Schedule	Average Risk Reduction [%]	Economic Impact Reduction
1	12,1,21,22,13,24,2,3,10,19,11,5,6,18,4,23	32.18	0.39
2	12,1,13,24,	31.98	0.43
	21,22,2,3,10,19,11,5,6,18,4,23		
3	1,12,21,22,10,19,11,5,13,24,2,23,3,6,18,4	26.14	0.28
4	12,1,24,13,	23.84	0.25
	2,3,10,21,11,5,6,18,4,22,19,23		
5	1,12,21,22,24,13,3,10,2,19,6,4,11,5,23,18	20.89	0.26

Conclusions

- The solutions have to offer predictive estimates of risk
- Mitigation of risks results in optimized schedules for asset and outage management
- Managing assets and outages requires spatiotemporal framework
- The data analytics has to be flexible to reflect different spatial and temporal scales
- The Big Data uses created big expectations

