

Indres 1 .

Setting of Synchronism Check Phase Angle using Three-Steps Method

Sungkyunkwan University Prof. Chul-Hwan Kim

Contents

Power System Innovation Laboratory

- **1.** Introduction
- 2. Synchronism Check Phase Angle (SCPA)
- 3. Deriving SCPA using 3 steps method
 - 3.1 Step 1; Deriving SCPA considering System Condition
 - 3.2 Step 2; Deriving SCPA considering impact on turbine generator
 - 3.3 Step 3; Deriving SCPA considering impact on system stability
 - 3.4 Setting of SCPA using three steps

4. Simulation

- 4.1 Simulation system and conditions
- 4.2 Simulation result and analysis
- 5. Conclusion

1. Introduction

Power System Innovation Laboratory

Most of faults occurring in transmission system \rightarrow transient faults \rightarrow disappearing in a short time

Automatic reclosing :

economic and effective method to improve the reliability and transient stability of power system by reclosing the tripped line after predetermined time

Synchronism check checking a synchronism between two separated systems

Synchronism check conditions : (1) Difference of frequency

(2) Difference of voltage magnitude

(3) Difference of voltage phase angle (crucial one)

Standardized conservative setting : 20~30[deg]

But, it may be not a good idea especially where the lines are in proximity to generation plant (there might be very large angle separation between the lines)

1. Introduction

Power System Innovation Laboratory

* Example for emphasizing necessity of synchronism check relay

Fig. 1 Transmission system in South-Central Michigan(2003)

- Tripping line between Argenta and Battle Creek \rightarrow phase angle difference of 80[deg]
- High speed autoreclosing without supervision of phase angle \rightarrow reclosing failure \rightarrow blackout

- Synchronism Check (to check the synchronism between two systems)
 - Limiting the impact associated with automatic reclosing under Live-Bus/Live-Line(LBLL) conditions
 - Three conditions (associated with the voltage phasors on either side of the open circuit breaker)
 - Difference of frequency, voltage magnitude, voltage phase angle

Fig. 2 Equivalent circuit for two systems to be reconnected

3.1 Step 1; Deriving SCPA considering system condition

- System study \rightarrow A kind of contingency study (e.g. lines out, fault, disturbance ...)
- Evaluating a range of system conditions to identify the worst potential system impact
- Important to find out a maximum possible angle under credible operating conditions!!
- Various factors should be considered in system study (as critical factors)

→ changing system conditions (e.g. angle separation)

- 1 Lines out (should be considered in automatic reclosing situation)
- 2 Generation level
- 3 Load level
- (4) Seasonal load power factor
- (5) Machines out

Related to <u>flow of active power</u>

3. Deriving SCPA using 3 steps method

Power System Innovation Laboratory

3.1 Step 1; Deriving SCPA considering system condition (Cont.)

3.2 Step 2; Deriving SCPA considering <u>impact on turbine generator</u>

- Damage on Turbine Generator
 - Caused by fault, <u>switching operation</u> and sub-synchronous resonance, etc.
 - Disturbances in electrical system \rightarrow torsional stress on turbine generator

Fig. 4 Electromagnetic coupling between mechanical system and electrical system

- IEEE Committee's recommendation (Screening guide)
 - "ΔP value equal to 0.5 per unit is considered an acceptable screening level for evaluating steady-state switching if a turbine generator is operating under the allowable load condition"
 - Phase angle difference causing over 0.5 per unit of ΔP is not allowable when reclosing

3.2 Step 2; Deriving SCPA considering impact on turbine generator (Cont.)

- ΔP (sudden power change)
 - 'Power output at the instant of switching' 'initial power output of the unit'

$$\Delta P[p.u.] = \frac{P_{pre} - P_{post}}{S_{MVA}} \tag{1}$$

Shaft Torsional Torque (imposed by reclosing)

※ Generally, checking out the torque between GEN part and LP part
→ it is normally the largest one among all of torques.

Fig. 5 Shaft torque generated between GEN and LPB

3.2 Step 2; Deriving SCPA considering impact on turbine generator (Cont.)

- δ₂ → maximum possible angle that can
 result in ΔP less than 0.5 per unit in
 reclosing the line (Screening guide)
- determined through an iterative process
 until getting δ₂ like the step-1
- *α* is an index for representing the degree
 of accuracy and if *α* is small, it suggests
 high accuracy of a process

3.3 Step 3; Deriving SCPA considering impact on system stability

- δ₃ → maximum possible angle which can
 make system restored normally without
 any problem on system stability
- determined through an iterative process like the step-2
- Integral Square Error (ISE) is used to check the system restored safely
 - one of the assessment methods for system performance

3.3 Step 3; Deriving SCPA considering impact on system stability (Cont.)

Integral Square Error (ISE)

$$ISE = \int_0^T \left(y(t) - y(\infty) \right)^2 dt \tag{2}$$

- $y(t) \rightarrow$ instantaneous angle across an open circuit breaker
- $y(\infty) \rightarrow$ convergent angle after reclosing (constant)
- y(t) is divergent \rightarrow ISE also becomes divergent (system got unstable)

3. Deriving SCPA using three steps method

Power System Innovation Laboratory

3.4 Setting of SCPA using 3 steps method

- Setting of SCPA \rightarrow minimum value of angles among δ_1 , δ_2 and δ_3
- Covering all the considerations at step-1, step-2 and step-3

Power System Innovation Laboratory

4.1 Simulation System and Condition

- System is under LBLL condition (one line out situation)
- Open lines considered are the ones between BUS A and BUS C in both systems (154kV and 345kV)

Power System Innovation Laboratory

Parameter	value				
Rated Power[MVA]	246				
Number of poles	2				
Moment of inertia $[lb \cdot ft^2 \cdot 10^6]$	HP = 0.009032 IP = 0.015130 LPA = 0.083480 LPB = 0.085970 GEN = 0.084440 EXC = 0.003327				
Spring constant $[lbf \cdot ft \cdot 10^6]$	HP-IP = 10.988 $IP-LPA = 19.883$ $LPA-LPB = 29.622$ $LPB-GEN = 40.335$ $GEN-EXC = 1.6064$				
Fraction of external torque[%]	HP = 30, IP = 26, LPA = 22, LPB = 22				

Table 1. Parameters of the turbine generator in 154kV

Table 2. Parameters of the turbine generator in 345kV

Parameter	value
Rated Power[MVA]	612
Number of poles	2
Moment of inertia $[lb \cdot ft^2 \cdot 10^6]$	HP = 0.018358 $IP = 0.030748$ $LPA = 0.169690$ $LPB = 0.174740$ $GEN = 0.171634$ $EXC = 0.006762$
Spring constant $[lbf \cdot ft \cdot 10^6]$	HP-IP = 22.334 $IP-LPA = 40.414$ $LPA-LPB = 60.210$ $LPB-GEN = 81.985$ $GEN-EXC = 3.2651$
Fraction of external torque[%]	HP = 30, IP = 26, LPA = 22, LPB = 22

- * The parameters shown in Table 1 and 2 are based on the physical dimensions of the shaft system and its material properties.
- ※ Multi-mass model should be used to determine the shaft torsional torque between masses

Fig. 12 Multi-mass model of the turbine generator used in transmission system

Power System Innovation Laboratory

4.2 Simulation Result and Analysis

Table 3. Simulation result in step-1 (154kV)

Factors considered in step-1																
Generation level		Load level (power factor : 98%)			Seasonal load power factor (Active power : 450MW at 98%)				Machine out (total number : 2)							
Initial angle of a-phase in generator [deg]	Maximum possible angle [deg]	Active power [MW]	Reactive power [MVAR]	Maximum possible angle [deg]	Season	Load power factor [%]	Active power [MW]	Maximum possible angle [deg]	Number of machine out	Maximum possible angle [deg]						
0	14.3	14.3 0 18.7 0	0	27.3	enring	07.6	1/18 163	31.7								
5	18.7		0	0	0	0	0	0	0	0	27.0	spring	27.0	440.105	51.7	0
10	23	- 150	3 150	30	200	summor	05.1	136 683	21.5	0	21.3					
15	27.3			150	50	20.0	summer	93.1	430.083	51.5						
20	unstable	- 300	(0)	20.4	6-11	07.9	440.001	21 7								
25	unstable		00	30.4	Tall	97.8	449.081	31./	1	29.1						
30	unstable	450	00	21.0		07.5	447 704	21.7								
35	unstable		450	90	31.8	winter	97.5	447.704	31./							

Step-1 The more severe system condition is, the larger angle separation happens

<u>SCPA should be lower than 31.8 [deg] considering system conditions</u>

Power System Innovation Laboratory

Fig. 13 Simulation result in step-2 (154kV)

Step-2 • There is no angle separation causing excessive ΔP

 \rightarrow SCPA can be determined as any value considering damage on turbine generator

- **Step-3** Maximum possible angle in step-3 \rightarrow 31[deg]
 - \rightarrow SCPA can be determined as value below 31[deg]

Power System Innovation Laboratory

4.2 Simulation Result and Analysis (Cont.)

Comparison between simulation result and conventional SCPA in Korea

Fig. 14 Comparison between SCPA of 3 steps method and conventional one (154kV)

- Results in 154kV transmission system
 - **Possibility to make the phase angle setting higher** than the angle which is used currently

Power System Innovation Laboratory

Table 5. Simulation result in step-1 (345kV)

Factors considered in step-1											
Generation level Load leve		el (power factor : 98%)		Seasonal load power factor (Active power : 450MW at 98%)				Machine out (total number : 8)			
Initial angle of a-phase In generator [deg]	Maximum possible angle [deg]	Active power [MW]	Reactive power [MVAR]	Maximum possible angle [deg]	Season	Load power factor [%]	Active power [MW]	Maximum possible angle [deg]	Number of machine out	Maximum possible angle [deg]	
20	15.9	0	0	35.9	spring	annina	07.6	118 163	30.7	0	35.0
25	19.5	150	30	37.3		97.0	440.105	57.7	0	55.7	
30	23	300	60	38.6	summer		05 1	426 692	20.4	1	26 5
35	26.6	450	90	39.9		95.1	430.083	39.4		30.5	
40	30.2	600	120	unstable	fall	fall	07.0	440.001	20.0		
45	33.8	750	150	unstable			97.8	449.081	39.8	2	unstable
48	35.9	900	180	unstable	winter	07.5	447 704	20.7	2	. 11	
50	unstable	1050	210	unstable		97.5	447.704	39.7	3	unstable	

Step-1

• The more severe system condition is, the larger angle separation happens

<u>SCPA should be lower than 39.9 [deg] considering system conditions</u>

Power System Innovation Laboratory

Table 6. Simulation result in step-3 (345kV)

Fig. 15 Simulation result in step-2 (345kV)

 There is limitation of angle separation causing excessive ΔP (32[deg]) Step-2

→ SCPA should be lower than 32[deg] considering damage on turbine generator

• Maximum possible angle in step-3 \rightarrow 39[deg] Step-3

 \rightarrow SCPA can be determined as value below 39[deg]

Power System Innovation Laboratory

4.2 Simulation Result and Analysis (Cont.)

Comparison between simulation result and conventional SCPA in Korea

Fig. 17 Comparison between SCPA of 3 steps method and conventional one (345kV)

- Results in 345kV transmission system
 - conventional synchronism-check phase angle setting in Korea is quite appropriate and reasonable

5. Conclusion

Power System Innovation Laboratory

Setting of Synchronism Check Phase Angle in Transmission Line using System Condition and Damage on Turbine Generator

• Synchronism check

- : checking a synchronism between two separated system
- 3 steps method is used by considering follows at each step
 - System condition \rightarrow evaluate a range of system conditions
 - **Damage on turbine generator** \rightarrow using ΔP as a screening parameter
 - System stability \rightarrow using ISE to check stability of system
- Conventional SCPAs in Korea are evaluated
 - $154kV \rightarrow$ possibility to make conventional SCPA higher
 - 345kV → appropriate and reasonable

Reliable SCPA → Solving the problems due to impacts on system

Thank you for listening!

