Power System Robust Dispatch A dynamic robust optimization framework

Shengwei Mei, Wei Wei

Department of Electrical Engineering, Tsinghua University

1st International Symposium on Smart Grid Methods, Tools and Technologies

Table of Contents

Adjustable Robust Optimization

- Static robust optimization
- Affine-adjustable robust optimization
- Full-adjustable Robust Optimization
- Product Energy and Reserve Dispatch

Static robust optimization Affine-adjustable robust optimization Full-adjustable Robust Optimization

• Static robust optimization (Soyster, 1973)

$$\begin{array}{ll} \min_{x \in X} c^T x & \min_{x \in X} c^T x \\ s.t. \ Ax \leq b \\ \forall b \in W \end{array} \Rightarrow \begin{array}{l} \min_{x \in X} c^T x \\ s.t. \ A_i x \leq \min_{b \in W} b_i, \forall i \end{array}$$

- *x* should be made before *b* is known exactly without violating system constraints for arbitrary *b* ∈ *W*
- Static RO is over pessimistic
- Static RO cannot deal with "=" constraints

$$egin{array}{ll} x=b \ orall b\in [0,1] \end{array} &\Rightarrow egin{array}{ll} x\leq \min_{b\in [0,1]}b=0 \ x\geq \max_{b\in [0,1]}b=1 \end{array}$$

Static robust optimization Affine-adjustable robust optimization Full-adjustable Robust Optimization

Mathematical model

Adjustable robust optimization (Ben-Tal, 2004)

$$\min_{x \in X} \{ c^T x \mid \forall b \in W, \ \exists y : By \le b - Ax \}$$

- x is the first stage decisions, which must be made before uncertain data b is known, in order to recover system constraints, y can be adjusted with respect to the actual value of b
- ARO is more flexible, but generally NP-hard
- If impose affine feedback policy y = Gb, ARO can be reduced to a linear program.

Static robust optimization Affine-adjustable robust optimization Full-adjustable Robust Optimization

Equivalent linear program

• Assume the uncertainty set *W* is a polytope

$$W = \{b \mid Hb \le h\}$$

• Robust feasibility constraints

• The equivalent linear program

$$\min_{x,\Gamma,G} \{ c^T x | x \in X, Ax + \Gamma h \le 0, \Gamma \ge 0, \Gamma H = BG - I \}$$

Static robust optimization Affine-adjustable robust optimization Full-adjustable Robust Optimization

Mathematical model

• Adaptive robust optimization (Bertsimas, 2011)

$$\min_{x \in X} c^T x + \max_{b \in W} \min_{y \in Y(x,b)} d^T y$$

$$Y(x,b) = \{y \mid By \le b - Ax\}$$

- Considers the worst-case second stage cost
- Affine assumption is relaxed
- The second-stage problem is NP-hard
- Solved by a Benders decomposition algorithm

Static robust optimization Affine-adjustable robust optimization Full-adjustable Robust Optimization

Solution Methodology

- The vertices of W is vert(W) = $\{b^l\}, l = 1, 2, \cdots$
- An equivalent formulation

$$\min_{s.t.\ x \in X, \ \tau \ge d^T y^l, \ Ax + By^l \le b^l, \ \forall b^l \in \mathsf{vert}(W)} (\mathsf{I})$$

• A decomposition algorithm (C&CG, Zeng, 2013) Step 1: Set $LB = -\infty$, $UB = +\infty$, $vert(W) = \emptyset$. Step 2: Solve master problem (I), $LB = c^T x^* + \tau^*$. Step 3: Solve subproblem $\max_{b \in W} \min_{y \in Y(x^*,b)} d^T y$, $UB = \min\{UB, c^T x^* + d^T y^*\}$ Step 4: If $UB - LB \le \varepsilon$, terminate, deploy x^* , otherwise, $vert(W) = vert(W) \cup b^*$, go to Step 2.

Static robust optimization Affine-adjustable robust optimization Full-adjustable Robust Optimization

Solution Methodology

• BLP reformulation for the subproblem (Falk, 1973)

$$egin{aligned} &\max_{b\in W}\min_{y\in Y(x,b)}d^Ty = \max_{b\in W,u\in U}u^T(b-Ax)\ &Y(x,b) = \{y|By\leq b-Ax\}\ &U = \{u|B^Tu = d, u\leq 0\} \end{aligned}$$

• Consider a cardinality constrained uncertainty set

$$W = \left\{ b \left| \begin{array}{c} b_i = b_i^e + b_i^h(z_i^+ - z_i^-), \forall i \\ \{z^+, z^-\} \in Z \end{array} \right\} \right\}$$
$$Z = \left\{ \{z^+, z^-\} \left| \begin{array}{c} z^+, z^- \in \{0, 1\}^{N_W} \\ z^+ + z^- \leq 1 \\ 1^T(z^+ + z^-) \leq \Delta \end{array} \right\} \right\}$$

Static robust optimization Affine-adjustable robust optimization Full-adjustable Robust Optimization

Solution Methodology

• Linearizing the objective

$$u_i b_i = u_i b_i^e + b_i^h (u_i z_i^+ - u_i z_i^-) = u_i b_i^e + b_i^h (v_i^+ - v_i^-)$$

 MILP reformulation for the subproblem with cardinality constrained uncertainty set

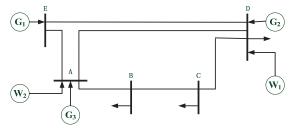
Mathematical model

- Pre-dispatch (first-stage decision variable)
 - p_i^f Scheduled output in the nominal scenario
 - r_i^+ Upward spinning reserve capacity
 - r_i^- Downward spinning reserve capacity
- Real-time dispatch (Second-stage decision variable)
 - p_i^+ Upward regulation power
 - p_i^- Downward regulation power
- Decide the optimal generation schedule *p^f*, spinning reserve {*r⁺*, *r[−]*}, such that for arbitrary actual wind realization *w* ∈ *P^W*, the real-time dispatch is feasible, the worst-case total cost is minimized.

Mathematical model

Uncertainty of wind generation

$$P^{W} = \left\{ w \middle| \begin{array}{c} w_{j} = w_{j}^{e} + w_{j}^{h}(z_{j}^{+} - z_{j}^{-}), \forall j \\ \{z^{+}, z^{-}\} \in Z^{W} \end{array} \right\}$$
$$Z^{W} = \left\{ \{z^{+}, z^{-}\} \middle| \begin{array}{c} z_{j}^{+}, z_{j}^{-} \in \{0, 1\}, \forall j \\ z_{j}^{+} + z_{j}^{-} \leq 1, \forall j \\ \sum_{j} (z_{j}^{+} + z_{j}^{-}) \leq \Delta \end{array} \right\}$$


 In the worst-case wind generation scenario, the wind power can reach the upper or lower bounds in at most ∆ wind farms

Mathematical model

$$\begin{split} \min_{\{p^{f},r^{+},r^{-}\}\in X} \sum_{i} \left(b_{i}p_{i}^{f}+d_{i}^{+}r_{i}^{+}+d_{i}^{-}r_{i}^{-}\right)+\\ \max_{\Delta w \in P^{W}} \min_{\{p^{+},p^{-}\}\in Y} \sum_{i} \left(b_{i}^{+}p_{i}^{+}+b_{i}^{-}p_{i}^{-}\right)\\ X = \begin{cases} \left\{p^{f},r^{+},r^{-}\right\} & \left|\begin{array}{c}P_{i}^{u}+r_{i}^{-}\leq p_{i}^{f}\leq P_{i}^{u}-r_{i}^{+} \;\forall i\\ \sum_{i}p_{i}^{f}+\sum_{j}w_{j}^{e}=\sum_{q}p_{q}\\ -F_{l}\leq\sum_{i}\pi_{il}p_{i}^{f}+\sum_{j}\pi_{jl}w_{j}^{e}\\ 0\leq r_{i}^{-}\leq R_{i}^{-}\Delta t, 0\leq r_{i}^{+}\leq R_{i}^{+}\Delta t, \forall i \end{cases} \end{cases}\\ Y = \begin{cases} \left\{p^{+},p^{-}\right\} & \left|\begin{array}{c}\sum_{i}(p_{i}^{f}+p_{i}^{+}-p_{i}^{-})+\sum_{j}(w_{j}^{e}+\Delta w_{j})=\sum_{q}p_{q}\\ -F_{l}\leq\sum_{i}\pi_{il}(p_{i}^{f}+p_{i}^{+}-p_{i}^{-})+\sum_{j}\pi_{jl}(w_{j}^{e}+\Delta w_{j})-\sum_{q}\pi_{ql}p_{q}\leq F_{l}, \forall l\\ 0\leq p_{i}^{+}\leq r_{i}^{+}, 0\leq p_{i}^{-}\leq r_{i}^{-}, \forall i \end{cases} \end{cases} \end{split}$$

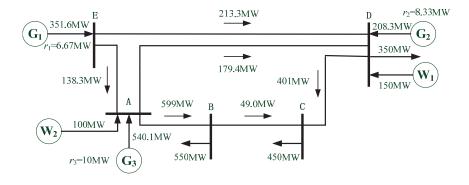
PJM 5-bus system

System topology

Parameter of generators

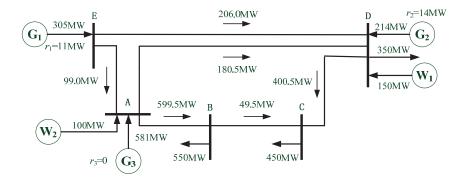
Unit No.	P_{min}/P_{max} MW	d^+/d^- CNY/MWh	b ⁺ /b [−] CNY/MWh	<i>R</i> ⁺ / <i>R</i> ⁻ MW/h
G1	[150, 400]	200	300	40
G2	[200, 500]	300	450	50
G3	[250, 600]	360	520	60

Parameter of transmission lines


Line	From Node	To Node	Reactance	Capacity (MW)
L1	A	В	0.0281	600
L2	А	D	0.0304	300
L3	А	E	0.0064	200
L4	В	С	0.0108	100
L5	С	D	0.0297	401
L6	D	Е	0.0297	300

• Uncertainty of wind generation

$$P^{W} = \left\{ w \left| \begin{array}{c} 135 \le w_{1} \le 165 \\ 90 \le w_{2} \le 110 \end{array} \right. \right\}$$


Results of traditional ERD

- Reserve is assigned proportionally
- Power flow in Line CD reaches its limit

Results of robust ERD

- Reserve is assigned to G₁ and G₂
- Certain margin is preserved in all lines

Definition

• Dispatchability W^D is the largest region in the uncertainty space, such that all the elements in it will not cause infeasibility in real-time dispatch (second stage problem) with fixed generation schedule p^f and spinning reserve $\{r^+, r^-\}$ (first-stage decision).

$$Y(x, w) = \{y \mid By \le b - Ax - Cw\}$$
$$W^{D} = \{w \mid Y(x, w) \ne \emptyset\}$$
$$x = \{p^{f}, r^{+}, r^{-}\}, y = \{p^{+}, p^{-}\}$$

• A projection form

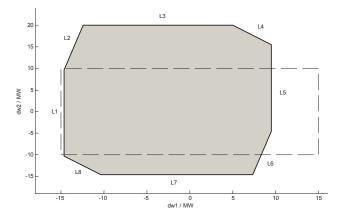
$$W^{D} = \operatorname{Proj}_{w}(P), P = \{w, y \mid By + Cw \leq b - Ax\}$$

• Theorem: *W^D* is the following polytope

$$W^D = \{w \mid u^T C w \ge u^T (b - Ax), \forall u \in \mathsf{vert}(U)\}$$

$$U = \{ u | B^T u = 0, -1 \le u \le 0 \}$$

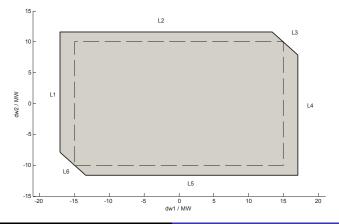
 A delayed constraint generation algorithm Step 1: Choose a sufficiently large set W^D Step 2: Solve the following problem


$$r = \max_{u \in U, w \in W^D} u^T (b - Ax - Cw)$$

Step 3: If $r^* = 0$ terminate, report current W^D ; else add the following constraint to W^D , and go to step 2

$$(u^*)^T C w \ge (u^*)^T (b - A x)$$

PJM 5-bus system


W^D of traditional ERD does not cover the uncertainty set, the RTD is infeasible when *w* ∈ *P^W* − *W^D*

Shengwei Mei, Wei Wei Power System Robust Dispatch

PJM 5-bus system

• W^D of robust ERD covers the entire uncertainty set, moreover, when $w \notin P^W$, RTD may still be feasible

Shengwei Mei, Wei Wei Power System Robust Dispatch

Thanks!

Shengwei Mei, Wei Wei Power System Robust Dispatch