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Introduction

Necessity for HVDC:

* EU ambition: 80-95% CO2 reduction in 2050 compared with
1990 levels.
® Large volumes of RES needed in NL:
® 2000 GW of sun PV required to cover 50% of the electricity
demand (TU Delft).
® 600 GW offshore & onshore wind power required to cover 50%
of the electricity demand (EWEA).

HVDC is beneficial since:
* It does not require three conductors.
® There are no reactive components.

® Easier control design.
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Multi-terminal HVDC configuration 1/2
Offshore HVDC power system?
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?© The Biggest Challenge for Offshore Wind, Prospero Events Group,
www.virtual.prosperoevents.com/blog/the-biggest-challenge-for-offshore-wind

'FU Delft


www.virtual.prosperoevents.com/blog/the-biggest-challenge-for-offshore-wind

Multi-terminal HVDC configuration 2/2

There is need for energy hubs and multi-terminal HVDC
connections.
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VSC design

Two level Voltage Source
Converter
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VSC control design

CIGRE control settings?

%e-cigre.org (2013). The CIGRE B4 DC grid test system.
Vrana et. all

(

® Inner controlling loops
are the same.

® Quter loops differ.

Offshore converters (island)
® AC voltage or active
power control.

® Frequency control with
PLL.

Onshore converters
(non-island)
* DC voltage or active
power control.

® AC voltage or reactive

power control.
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MMC control - classical approach

Outer contre
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Advanced control approaches for MTDC 1/2

Control Methodologies in
Mesh HVDC grid
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Advanced control approaches for MTDC 2/2

| Control for Power Electronic |
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regulator control intelligence
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Model Predictive Control
MPC formulation

Np
min J = > %(k+mlk)T Qx(k + m|k) +7" Rij,
Y m=1

subject to Mij < b,
X(k + mlk) = F(k) = ym(k + m|k),

where:
® X represents state variables;
* F(k) is a reference signal,
* 1 is calculated by minimising the objective (cost) function;
® y represents outputs;

° R, @, M, and b are corresponding matrices and vector.
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Use of MPC for MTDC control 1/6

Different study cases
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Use of MPC for MTDC control 2/6

Pl-left and MPC-right RTDS processor time allocation

Control hierarchy
Control hierarchy

ms s
Response time Responsetime
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Use of MPC for MTDC control
Test setup in RSCAD/RTDS

Cs Lower Level controller
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Lower arm of Phase C

GTFPGA

MMC Valves

380kV/220kV,
Y/D

RACK 9|

MVIC Valves

220kV/145kV  Offshore
Wind 1

220kV/145kV  Offshore
DIY Wind2 |

3/6

21



'i"U Delft

Use of MPC for MTDC control
Interoperability PI-MPC: Behavior after wind speed change
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Use of MPC for MTDC control 5/6

Interoperability PI-MPC: Effect of transition between
controllers
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Use of MPC for MTDC control 6/6

Conclusions

® The fast power flow injection increases DC voltage in the
presence of slow controllers (Pl), but not when MPC is used.

® A major setback was observed during transition between MPC
and Pl controller.

* MPC is computationally efficient and can produce output
within one time interval in real-time simulation.
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Use of Sliding-Mode Control (SMC) 1/3

Control settings
* PI controls for circulating/zero/output current control, and
zero energy control.
* Integral SMC active/reactive power control, defined with
sliding surface:
A A A
* Sliqg) = idqrer ~ld.q
~0iA ‘A A A
® S(igg) =—igq= /U, /|XC/A’q| sgn(xg,) —1.1Uxg,, with U>0
and Xg,q being the outputs of the output current controller.
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Use of SMC 2/3

Test system - |IEEE 39 bus
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HVDC link

a) Configuration | b) Configuration Il

Test case: adaptive control of HVDC links for frequency stability
enhancement
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Use of SMC

3/3

Reaction to large disturbance - tripping of G6 with approx.

800 MW loss
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Conclusion

This presentation

® Describes potential for advanced controls in MTDC.
® Two test cases are given:

® MPC for onshore converters and reaction to wind speed
change and transition between controllers.

® Role of SMC for adaptive control of HVDC links for frequency
stability enhancement.

® There is much more...
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Thank you for your attention!

4th International Symposium on Smart Grid

Methods, Tools, and Technologies

Jinan, China
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