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1. Introduction
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* As of 03/31/2013, there were 1126 PMUs installed in US.
* Source:  Department of Energy. Synchrophasor Technologies and 
their Deployment in Recovery Act Smart Grid Programs, August 2013.

* As of 2012, over 2400 PMUs deployed in 500 kV and higher 
plants & substations of China.
* Source:  Lu C, Shi B, Wu X, et al. Advancing China's smart grid: 
Phasor measurement units in a wide-area management system. 
IEEE Power and Energy Magazine, 2015, 13(5): 60-71.
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• Thousands of  phasor measurement units (PMUs) have been deployed in the transmission 
level all over the world, which provide a new measure for measuring, monitoring and 
control of the physical power system.

• Especially, wide-area damping controllers (WADCs) can effectively stabilize both local and 
interarea low frequency oscillations.
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• Since remote signals are employed as feedback signals, time delay in the range of tens 
to hundreds of millisecond emerges in transmission and process of wide-area 
measurements.

• With the consideration of time delay effects, the cyber-physical power system (CPPS) had 
been involved into a Delayed CPPS (DCPPS)

• Time delays compromise the performance of wide-area control system and thus may 
jeopardize the stability of DCPPS.



DCPPS modeling
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The dynamics of the DCPPS can be 
represented by the following linearized 
delayed differential equations (DDEs):
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Structure of the DCPPS:

where τi (i=1, …, m) are delay constants.

• The most popular methods to deal with DCPPS are: 1) delay-dependent 
stability criteria; 2) Padé approximation.

• Delay-dependent stability criteria 
– They are sufficient conditions for asymptotic stability and inherently conservative. 
– The scalability is constrained by the solution of the algebraic Riccati equation (ARE), 

where only system with less than 100 order can be dealt with. 
• Padé approximation

– Low order Padé approximation results in major phase estimating errors in the case of 
large time delay.



Inertial block vs. Exponential delay term
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The inertial block leads to major magnitude and phase estimating errors.
1. The inertial block results in magnitude estimating errors of 2.09 and 5.4 db when delays 

are 0.05 and 0.1 s, respectively.

2. The inertial block results in phase estimating errors of 6.85 and 32.48 degrees when 
delays are 0.05 and 0.1 s, respectively.

1
1+ sτ

se τ−Inertial block: Exponential delay term:

Figure (a) Magnitude responses for inertial block and 
exponential delay term when delays are 0.05 and 0.1s. 

Figure (b)  Phase responses for inertial block and 
exponential delay term when delays are 0.05 and 0.1s. 



Padé approximation vs. Exponential delay term
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Figure (a) Phase responses of Padé approximation 
with orders of 2-4 when the delay is equal to 150ms.

Figure (b) Trajectory of the inter-area oscillation 
mode of the two-area four-machine test system 
w.r.t. delay = 0.02, 0.05, 0.1, 0.2:0.2:2.0s.

4.04, 0.18 and 0.09 
deg @ f=2.5Hz

Low order Padé approx. results in major phase estimating errors in the case 
of large time delays.
• When delay equal to 0.15s, the phase estimating errors for Padé approximation with orders 

of 2-4 are 4.04, 0.18 and 0.09 degrees, respectively.
• When delay increases to 0.5s, errors for Padé approximation with orders of 3 and 5 are 

32.35 and 1.16 degrees, respectively.
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2. Spectral discretization-based eigen-analysis
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The characteristic equation of DCPPS is: 
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• Challenges
– Since the exponential delay terms are 

involved, the characteristic equation is 
transcendental in nature.

– The equation has an infinite number of 
eigenvalues, which is basically 
unsolvable by traditional eigenvalue 
methods.

• Our solution
– To compute a set of the rightmost or the 

least damped eigenvalues of the system 
by using the spectral discretization-
based eigen-analysis methods.

• Theoretical foundation
– There are only a finite number of 

eigenvalues in any vertical strip of the 
complex plane.  

– The number of eigenvalues lying in the 
right-half complex plane are at most in a 
finite number.

Figure. Illustration of the spectrum of DCPPS



Principle of spectral discretization method
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The spectral discretization-based eigenvalue method can compute a set of critical 
eigenvalues from the discretized matrices approximating the solution operator (h) 
and the infinitesimal generator .
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Framework of spectral discretization method
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Spectral discretization-based eigenvalue algorithms

Pseudo-spectral
(PS)

Linear multi-step
(LMS)

Implicit Runge-
Kutta (IRK)

Infinitesimal
generator ()

IGD-PS (IIGD)
IGD-PS-II (EIGD) IGD-LMS IGD-IRK

Solution 
operator ((h))

SOD-PS
SOD-PS-II SOD-LMS SOD-IRK
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Lots of numerical methods, such as pseudo-spectral differencing (PS), linear 
multi-step (LMS) and implicit Runge-Kutta (IRK), can be utilized to discretize 
the solution operator (h) and infinitesimal generator .  

Table. Spectral discretization-based eigenvalue algorithms for large DCPPS
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3. Partial spectral discretization-based eigenvalue 
computation method
• Motivation

– The dimension of discretized matrices N and TN approximating 
 and (h) is (N+1)n, which is N+1 times of the number of system 
state variables, resulting in excessive CPU time consumption.

– The computational burden can be reduced and the efficiency can 
be improved by reducing the dimension of N and TN.

15

• Basic idea of partial spectral discretization
– Considering a few number of wide-area damping controllers 

(WADCs) are installed in power system to damp out inter-area 
oscillations, the state variables directly affected by 
communication delays are very few.

– The dimensions of discretized matrices N and TN can be 
significantly reduced through discretizing only the delayed state 
variables instead of all state variables. 

– We call this as partial spectral discretization.



State variable partitioning
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The n system state variables are divided into two sets: n1 non-delayed variables 
Dx(1) and n2 delayed variables Dx(2). Note that n1 >> n2.
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Figure. Partitioning of system state variables 
over the past time interval [-τmax, 0].
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The derivative of system states does 
not relate to Dx(1)(θ), θÎ[-τmax, 0].



Principle of partial spectral discretization
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At t=0, considering the derivative of system states does not relate to Dx(1)(θ), 
θÎ[-τmax, 0], the evaluation of φ(1)(θ) and φ(2)(θ) at each discrete points θN,i

(i=0, …, N+1) on [-τmax, 0] has been reduced to evaluate φ(1)(0) at θN,N+1=0 and 
φ(2) (θ) at θN,i (i=0, …, N+1).
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Dimension reduction of the discretized matrix
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Since n1>>n2, by applying the partial spectral discretization, the dimension of 

the matrix  approximating  has been to 1/(N+1) times of N. N



The 16-machine 68-bus test system
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200 state variables
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τf1=150 ms，τc1=90 ms
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Shandong power grid (n=1128)
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Numerical tests under constant delays
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Test 
Syst. s N r

EIGD PEIGD Speed 
up

w/o delay
Dim(N) NIRA / CPU 

Time (s) Dim(    ) NIRA / CPU 
Time (s) Dim NIRA / CPU 

Time (s)

System I
(n=200, 
n2=6)

7j 10 20 2200 9 / 0.33 260 7 / 0.15 1.71 200 10 / 0.13

13j 10 20 2200 15 / 0.50 260 13 / 0.27  1.60 200 17 / 0.19

7j 20 20 4200 9 / 0.74 320 7 / 0.19 3.03 200 10 / 0.13

13j 20 20 4200 15 / 1.24 320 13 / 0.35  3.07 200 17 / 0.19

7j 20 50 4200 9 / 4.32 320 9 / 1.00 4.32 200 9 / 0.48

13j 20 50 4200 10/5.25 320 10 / 1.19 4.41 200 11 / 0.79

System II
(n=1128, 

n2=6)

7j 10 20 12408 5 / 1.39 1188 5 / 0.19 7.32 1128 6 / 0.13

13j 10 20 12408 6 / 2.16  1188 6 / 0.29 7.45 1128 8 / 0.21

7j 20 20 23688 5 / 2.55 1248 5 / 0.22 11.59 1128 6 / 0.13

13j 20 20 23688 7 / 4.24  1248 7 / 0.36 11.78 1128 8 / 0.21

7j 40 50 23688 7 / 17.32 1248 7 / 1.11 15.60 1128 7 / 0.79

13j 40 50 23688 4 / 12.50  1248 4 / 0.75 15.67 1128 4 / 0.50

System III 
(n=80577, 

n2=6)

7j 10 20 886347 6 / 203.10 80637 6 / 23.78 8.54 80577 7 / 20.24

7j 20 20 1692117 6 / 381.47 80697 6 / 23.82 16.01 80577 7 / 20.24

7j 20 50 1692117 5 / 1280.47 80697 5 / 68.41 18.72 80577 6 / 66.44

The dimension in PEIGD method 
has been reduced to about 
1/(N+1) of that in EIGD method.

N

The speed up increases 
with the size of the power 
system.

CPU time for PEIGD 
is almost the same as 
the case without delay.



Numerical tests under random delays
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Figure. Distributions of two time delays in 1000 trials.
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系统 I 系统 II 系统 III

加
速
比

最小加速比
平均加速比
最大加速比

Methods CPU time (s) System I System II System III

PEIGD

Max. 0.27 0.32 29.02

Min. 0.17 0.19 22.07

Avg. 0.21 0.24 25.00

EIGD

Max. 0.87 3.09 460.76

Min. 0.55 2.22 330.93

Avg. 0.68 2.66 383.10

Figure. Histogram of speed up 
for 1000 trails

Table. Statistics of CPU time for one IRA 
iteration (N=20, s=7j,  r=20)

Sp
ee

d 
up

System I System II System III

Compared with the EIGD method, the proposed PEIGD method can save 

88%~94% CPU time for one implicitly restarted Arnoldi (IRA) iteration. 

Min.
Avg.
Max. 
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4. Non-smooth optimization-based WADC tuning 
method

• Motivation
– The existing method aims at maximizing the least damped oscillation 

mode rather than the targeted inter-area oscillation modes. The 
obtained WADC’s parameters are absolutely not optimal. 

– To cope with the non-differentiable problem, intelligent optimization 
algorithms, such as PSO, are popular to pursuit the optimal solution, 
which are prone to fall into local extreme values and characterized by 
low computational efficiency and reliability, etc.

26

• Gradient sampling-based method
– The objective function is determined as maximizing the least damping of 

the targeted inter-area oscillation modes associated with the WADC to 
be tuned. 

– The mathematical optimization methods instead of intelligent 
optimization algorithms are utilized to derive the optimal solutions, 
where the gradient at non-differentiable points are obtained by gradient 
sampling technique. 



Objective function
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The objective is to maximize the least damping of the targeted inter-area 
oscillation modes associated with the WADCs to be tuned. 
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where，
zI :=min{z() | ∈I} denotes the least damping ratio of targeted inter-area modes；
I denotes the set of targeted inter-area oscillation modes under np operating conditions;
R denotes the set of the remaining oscillation modes under np operating conditions.

Upper/lower 
constraints on 
WADC’s 
prameters

Constraint on 
small signal 
stability



Avoidance of “mode masking” problem
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Figure (a) Illustration of optimal tuning of 
WADCs aiming at maximizing the smallest 
damping ratio among all oscillation modes.  

Figure (b) Illustration of optimal tuning of WADCs 
aiming at maximizing the smallest damping ratio 
among the target inter-area oscillation modes.  

+: local oscillation mode : inter-area oscillation mode



Tracking the targeted inter-area oscillation modes
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Let p() be the parameters of WADCs and   be one mode in I after the (-1)th
parameter adjustment. At the next parameter tuning, can be identified by 
the following three steps.
1) Estimating          :  The estimation of   denoted by           can be readily 

obtained by applying the matrix perturbation theory.  

2) Paring           with           : It is achieved by screening the minimum Euclidean 
distance                       . 

3) Determining inter-area modes in I : By taking           as a bridge,           at the 
th parameter tuning can be reliably track        at the last parameter tuning.
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The objective function can be reformulated by using the penalty 
function method and by recasting the max-min problem in a dual form, 
which is a challenging non-convex and non-smooth optimization 
problem.
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Gradient sampling at non-differentiable points
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Figure. Point subset  around 
the non-differentiable point p()
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• First, define Clarke sub-differential (i.e., generalized gradient) at a non-
differentiable point p() :

• The steepest descent direction d() is 
defined as the opposite of the vector z in 
the Clarke sub-differential whose norm is 
the smallest.

where “conv” denotes the convex hull and 
is any full-measure subset of a neighborhood 
around p() containing differentiable points.



Table. Performance comparison of optimal WADCs 
with different objective functions (Hz / %)

Operating 
condition

max{zI} (The proposed method) max{min{zI , zR }}

fI / zI fR / zR fI / zI fR / zR

1 0.48 / 13.09 1.10 / 6.20 0.49 / 6.34 0.98 / 6.34

2 0.43 / 16.95 1.16 / 4.10 0.46 / 8.69 1.00 / 4.18

3 0.48 / 13.41 1.16 / 4.20 0.39 / 7.52 1.00 / 4.24

Test results

Since zR is equal to or less 
than zI, mode masking 
problem occurs and the 
optimization process is 
stagnated.
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Table. Optimal parameters of WADC and CPU time

Operating 
conditions

The proposed method PSO

Ks T1 T3
Iterations /

Time (s) Ks T1 T3
Iterations /

Time (s)

1 56.77 4.00 0.69 82 / 47.64 56.85 4.00 0.69 200 / 217.23

2 100.0 4.00 0.78 43 / 57.13 100.0 4.00 0.78 200 / 220.30

3 100.0 4.00 0.75 50 / 83.63 100.0 4.00 0.75 200 / 235.82
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Figure. Iteration history of objective function J and the least 
damping ratio of the targeted inter-area oscillation modes zI
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5. Conclusion

• The spectral discretization-based eigenvalue computation method resolves a 
long-standing challenging problem for stability analysis of large power 
system with consideration of time delay impacts. A set of the rightmost or the 
least damped oscillation modes of the system can be efficiently computed.

• The partial spectral discretization-based method can significantly reduce the 
computational burden of original spectral discretization-based method by 
discretizing delayed state variables only. The computational efficiency can be 
enhanced by an order of magnitude. 

• The parameters of WADC are optimally tuned by the gradient sampling-
based non-smooth optimization method. Mode tracking method reliably 
tracks the targeted inter-area modes during the optimization process and the 
gradient sampling technique efficiently works out the steepest descent 
direction at the non-differentiable points. Since mode masking and stagnation 
problems are avoided and optimal solutions are obtained.
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