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Thoughts I want to leave you with

The low carbon future
• How are we going to get there?
The technology enablers
• Smart grid (sensors, computers, communications, 

power electronics, etc)
The policy enablers
• Mandatory clean energy vs cost

Different countries will take different paths
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Control Centers before 1960s

• Hard wired metering
• Ink chart recording
• Light and sound alarming
• Hard wired remote switching
• Analog Load Frequency Control (1930s)
• Economic Dispatch (1950s)
• ED was first to go digital
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The Present (since 1960s)
• The digital control center (SCADA-AGC)
• The RTU to gather digital data at substation
• Comm. channel from sub to control center (CC)
• The SCADA
 The Data Acquisition from RTU to CC
 The Supervisory Control signal from CC to RTU

• The screen based operator display
• Automatic Generation Control (AGC)
 The digital algorithm for ED
 The digital version of LFC
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The Present (since 1970s)
• The Energy Management System (EMS)
• State Estimation (SE)
• Static Security Analysis (n-1)
• Dynamic Security Analysis (stability)
 Transient, Oscillatory, Voltage

• Optimal Power Flow based analysis
 Preventive Action calculation
 Corrective Action calculation 
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Evolution of Control Center Architecture

• Special real time computers for SCADA-AGC
• Mainframe computer back ends for EMS
• Redundant hardware configuration with checkpoint 

and failover
• Multiple workstation configuration
 Back-up is more flexible

• Open architecture initiated
• CIM (Common Information Model) standard
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China Grid
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West European Power Grid
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India Grid
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Phasor Measurement Units
• Measurements at substations are now handled by 

microprocessors
• Measurements can be sampled at very high rates
• Measurements can be time-stamped by satellite
Measure magnitude and phase angle (PMU)
• PMU output rates: 30-120 per second
• Data rates for control centers will increase by 2-3 

magnitudes
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DISTRIBUTION MANAGEMENT SYSTEM
• Measurements along the feeder
• Switches, transformer taps, shunt capacitor and 

inductor controls
• Communications: Radio, Power Line Carrier, Fiber 

backhaul
• Closer voltage control increases efficiency
• Greater switching ability increases reliability
• Better coordination with outage management
• Sets up for distributed generation, demand 

response, electric vehicles or local storage
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Geographic Information System

• GIS is getting more integrated into all aspects of 
system operations, especially
 Distribution management
 Outage management

• This has been helpful in other applications like 
Crew Management, Distribution Planning, etc
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Outage Management System

• The computerization of Outage Management has 
made huge strides

• Requires less people to handle customer calls
• Requires less people to do crew dispatching
• Time savings are significant
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Technologies involved
• Sensors (PMU, AMI)
• Computers and Communications (to manage data)
• Controls (including power electronics)
• Software (for operation and analysis)

For developed countries making the grid smart is 
mainly retrofit
For developing countries the ICT and T&D are 
mostly greenfield

SMART ELECTRIC GRID
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Advanced Metering Infrastructure

• Smart Meters
 Gateway between utility and customer
 Communication to utility and home appliances
 Time-of-day and real-time rates

• Applications
 Optimize energy efficiency and energy cost
 Demand response
 Can integrate generation (roof PV), storage (EV)

• Microgrids
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MICRO-GRID

• Can operate in isolated mode
• Can be few kW or hundreds of MW
• Suitable for isolated areas or weakly 

connected areas
• Suitable for critical loads (hospitals, military 

bases, etc)
• Strategic approach for increasing resiliency
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Building Automation
• Smart Meters
 Gateway between utility and customer
 Utility can send price signals or control signals
 Change rates (in real time?)
 Control appliances (especially heating/cooling)

• Customer Applications
 Optimize energy efficiency and energy cost
 Demand response
 Can integrate generation (roof PV), storage (EV)

• Microgrids
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US SOLAR POWER



College of Engineering and Architecture

US WIND POWER
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China Solar Energy Resources

China Solar Energy Resources
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China Wind Energy Resources
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Clean Energy Strategy must be adapted to Local 
needs
• For developed countries with low load growth
 Changing generation mix means new 

investment without increasing energy 
production

• For developing countries with high load growth
 Changing generation mix means new 

investment will be in cleaner technologies
Both will benefit from increasing ICT or smart 
grid technologies

ELECTRIC GRID GROWTH



College of Engineering and Architecture

In terms of investment
• Generation technologies cost the most
• T&D technologies is a magnitude less
• ICT is another magnitude less
In terms of strategy
• ICT (smart grid) should be part of any 

investment
• Whenever possible, interconnect for 

economics and reliability
• If necessary, start local and build out

CLEAN ENERGY STRATEGY
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• Clean generation targets – sustainability vs 
economics

• Reliability standards – need emphasis on best 
practices rather than compliance

• Transmission planning – who is responsible?
• Operational procedures – e.g. data sharing
• Market rules – often does not take into account 

operational realities
• Rate regulation – FERC, state PUCs
• Federal or state energy policies

POLICY IS THE DRIVER
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• Alternate Grid Futures
 More Interconnections at High Voltage
 More Stand-alone Microgrids
 Depends on Regional Needs

• Smart Grid
 Retrofitting ICT is Expensive
 Greenfield ICT has Low incremental Cost

• Government Policy is the Driver
 Sustainability, Reliability, Market Rules
 Technology and Economics are Still 

Important

CONCLUDING REMARKS
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