

Situational awareness through WAMS

NILANJAN SENROY DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY DELHI

India – The energy future

	Population (millions)	TPES (toe/capita)	Electricity (kWh per capita)	CO ₂ Emissions (t CO ₂ per capita)
World	6,761	1.80	2,730	2.34
OECD	1,225	4.28	8,012	2.30
Asia	2,209	0.66	721	2.16
Africa	1,009	0.67	561	1.38
United States	307	7.03	12,894	16.90
China	1,331	1.70	2,631	5.13
India	1,155	0.58	597	1.37

TPES: Total primary energy supply measured using metric tons of oil equivalent (toe)

In 2004-05, proportion of households electrified: rural – 55%, urban – 92%.

Current status– June 2017

Thermal	Renewable	Hydro	Nuclear	Total
194.4	57.3	44.6	6.8	326.8

•RE forecasting, SCADA for RE, Scheduling of RE

- Testing of battery technology
- •Green energy corridors
- •Wide area measurement systems
- •Automated metering infrastructure, DSM pilot projects

Source: Central Electricity Authority 2016, PricewaterhouseCoopers India

59%

India – load growth

URTDSM project

- Placing PMUs on buses > 400 kV, generator connections at 220 kV etc.
- Phase 1 1600 PMUs, Phase 2 620 PMUs
- Immediate targets
 - Analysis of grid incidents
 - Detection and analysis of grid oscillations
 - Post despatch analysis
 - Enhancing situational awareness
- ► Future applications
 - ► Line parameter estimation
 - Vulnerability assessment of distance relays
 - Linear/dynamic state estimator
 - CT/CVT calibration
 - Supervision of zone-3 protection
 - Control schemes for grid security

WAMS data - India

WAMS data - USA

Mexican Power System

- Oscillations in the real power flow on the 230 kV MPD-MCD transmission line in response to tripping of Laguna Verde 650 MW unit.
- FFT reveals prominent modal frequencies at 1.5 and 0.8 Hz.

Mexican Power System

- Instantaneous frequency and amplitudes of the two most prominent modes extracted from oscillations in the line flow of the 230 kV MPD-MCD line.
- Note the monotonic rise in amplitude over time signifying undamped oscillations

WAMS data – WSCC network

Source: N. Senroy, "Generator Coherency Using the Hilbert-Huang Transform," IEEE Trans. Power. Sys., vol. 23, No. 4, pp. 1701-1708, June. 2008.

Instantaneous coherency

FDR14 (ASU) is coherent with FDR16 (Los Angeles).

Source: N. Senroy, "Generator Coherency Using the Hilbert-Huang Transform," IEEE Trans. Power. Sys., vol. 23, No. 4, pp. 1701-1708, June. 2008.

Tripping of 2000 MW at Rihand STPS

Source: A. Prince, N. Senroy, R. Balasubramanian, "Targeted approach to apply masking signal-based empirical mode decomposition for matrices. *Distr.*, vol. 5, No. 10, pp. 1025-1032, 2011.

ment signal data," IET Gen.

Kanpur

Source: P. Bhui and N. Senroy, "Application of Recurrence Quantification Analysis to Power System Dynamic Studies," IEEE Trans. Power Sys., vol. 31, No. 1, pp. 581-591, 2016

2620

Online tripped line identification

Proposed Method-

> Part 1: Probable Tripped Lines: The most probable tripped lines are ranked after a fault by comparing offlinestored and online-measured normalized kinetic energy gained by generators in 0.1s of the fault.

> Part 2: Exact Tripped Line- Consider a line as tripped and then calculate power output of generators, compare it with measured power. Repeat it for first few lines among the ranked ones to identify the exact tripped line.

$$\overline{KE} = \left[\overline{ke_1}\overline{ke_2}..\overline{ke_i}..\overline{ke_G}\right] = \frac{\left[ke_1ke_2...ke_i..ke_G\right]}{\sum_{i=1}^G ke_i}$$

>Advantages of using normalized KE

>Remains same for all types of faults, no need of identifying fault type.

➢ Remains almost same for small variation in fault duration. Both stored and measured norm-KE are of duration 0.1 s. However, as norm-KE varies small with fault duration, it will reduce the impact of error in exact fault inception point.

Loading Condition	Fault distance as % of line					
Variation for Data	50%		75%			
Set Generation	Wrong	Wrong Average Wrong		Average number		
	identification	number of lines	identification	of lines tested		
		tested				
0%	0/372	3.0403	0/372	3.0242		
3% randomly	1/372	3.0645	1/372	3.0376		
5% randomly	2/372	3.0914	2/372	3.1048		
20% randomly	2/372	3.1720	2/372	3.1452		
2.5% uniformly	1/372	3.0591	1/372	3.0323		
5% uniformly	0/372	3.0699	0/372	3.0833		
10% uniformly	1/372	3.1129	1/372	3.0887		
20% uniformly	2/372	3.1989	2/372	3.1855		

Impact of Load modelling

Percentage error between measured and calculated power of generators	Wrong identification
No error	0/34
0.5%	0/34
0.75%	0/34
1.1%	1/34
2.2%	2/34
2.5%	2/34

LQG based WADC:

Fig.3: With and without lead-lag WADC, perfect medium

Without any PSS

Freq. (Hz) Damp. factor

0.09

0.09

-0.03

1.12

1.15

0.64

Mode

Local 1

Local 2

Inter-area

TABLE 1:

1.55

1.63

0.63

With local PSS only

Freq. (Hz) **Damp. factor**

0.29

0.28

0.23

With local PSS & WADC

Freq. (Hz) Damp. factor

0.46

0.42

0.34

0.97

1.67

0.57

Fig. 2: LQG controller with Plant details

Fig. 4: With and without LQG controller, having time delay of 0.25 s and noise in remote signal

TABLE 2:

MODAL ANALYSIS OF SYSTEM(having perfect medium), WITH AND WITHOUT LEAD-LAG WADC MODAL ANALYSIS OF SYSTEM(having noise and delay), WITH LQG CONTROLLER AS WADC

Mode	Continuous LQG		Discrete LQG	
	Freq.(Hz)	Damping factor	Freq.(Hz)	Damping factor
Local 1	1.56	0.29	1.56	0.29
Local 2	1.60	0.30	1.61	0.30
Inter-area	0.63	0.25	0.63	0.25

Source:	Μ.	Bhadu.	N.	Senroy	
000100.	1 * 1 •	Driado,		00110	 _

ower System Damping Controller," IET Gen. Trans. Dist., vol. 10, No. 6, pp. 1470 - 1478, 2016

Delay Calculations

Fixed delay

- Delay due to processing, DFT, multiplexing and data concentration
- Independent of communication medium used
- Estimated to be around 75 ms
- Propagation delay
 - Function of the communication link and physical separation
 - Ranges from 25 ms in case of fiber-optic cables to 200 ms in case of low earth orbiting (LEO) satellites

Event triggered communication

Comparison of remote signal in continuous and discrete mode for different sigma's

Comparison of time domain response with various values of tuning parameter sigma

TABLE 1:							
Comparison of the number of data samples communicated in the ET-WADC and							
continuous time WADC for different $\boldsymbol{\sigma}$							
=	σ 0.2 0.5 0.9						
-	Continuous-time WADC	2000	2000	2000			
	ET-WADC	329	263	206			

Source: M. Bhadu, N. S. Tripathy, I. N. Kar, and N. Senroy, "Event-triggered Wide-area Damping Controller for Inter-area Oscillations: A Limited Output Feedback Based Approach," IET Gen. Trans. Dist., vol. 10, No. 6, pp. 4094 - 4104, 2016

Big data in smart grids

- Equipment reliability, asset management
- ► Forecasting
- Demand side management
- State estimation
- Online DSA
- Distribution metering
- Electric vehicles, distributed energy storage, roof top solar

Decision making framework

- Corrective: e.g. fault location, anomaly detection
- Predictive: load/resource forecasting, management of reserves
- Distributed: distributed monitoring and control infrastructure
- Adaptive: online DSA, power quality monitoring, load signatures
- Economic: power market operations, pricing

Challenges in developing big data analytics

- Data is noisy, latency issues
- Heterogeneous data
 - Flexible system architectures to handle such data
- Privacy and information security issues
- Sophisticated mathematical algorithms to handle high dimensionality, distributed data
 - ► Machine learning, clustering, classification
 - ► Linear/nonlinear optimization
 - ► Feature extraction
 - Outlier detection and handling
 - Dimensionality and model order reduction
- Electricity sector in India is over-regulated!
- Lack of skilled manpower

Thank you... nsenroy@ee.iitd.ac.in