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1. Background and Problem Formulation
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* As of 03/31/2013, there were 1126 PMUs installed in US.

* Source:  Department of Energy. Synchrophasor Technologies and 

their Deployment in Recovery Act Smart Grid Programs, August 2013.

* As of 2012, over 2400 PMUs deployed in 500 kV and higher 

plants & substations of China.

* Source:  Lu C, Shi B, Wu X, et al. Advancing China's smart grid: 

Phasor measurement units in a wide-area management system. 

IEEE Power and Energy Magazine, 2015, 13(5): 60-71.
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• Thousands of  phasor measurement units (PMUs) have been deployed 

in the transmission level all over the world, which provide a new measure 

for measuring, monitoring and control of the physical power system.

• Especially, wide-area damping controllers (WADCs) can effectively 

stabilize both local and interarea low frequency oscillations.



Physical Power 
System 

Wide-Area 
Measurement and 
Control System

PMU/Actuator

WAMS
information flow

Phasor data 
concentrator/Router

Central controller

Power flow

Legend

GPS information

Background(cont’d)

4

An illustrative diagram of the delayed 

cyber-physical power system (DCPPS)

• Time delay in the range of tens 

to hundreds of millisecond 

emerges in transmission and 

process of wide-area 

measurements.

• With the consideration of time 

delay effects, the cyber-

physical power system (CPPS) 

had been involved into a 

Delayed CPPS (DCPPS)

• Time delays compromise the 

performance of wide-area 

control system and thus may 

jeopardize the stability of 

DCPPS.

• Its impact on small signal 

stability of DCPPS therefore 

should be intensively studied.



Formulation of SSSA of DCPPS
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The dynamics of the DCPPS can be 

represented by the following linearized 

delayed differential equations (DDEs):

Key problems related to small signal stability analysis of DCPPS:

1. Impacts of time delay on system’s small signal stability

2. The maximum delay that the system can tolerate and maintain 

stable (i.e., delay margin)

3. Wide-area damping controller design by taking time delay 

impacts into consideration
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Structure of the DCPPS:

where i (i=1, …, m) are delay constants.



Existing methods for SSSA of DCPPS

• The most popular methods to deal with DCPPS are: 1) delay-

dependent stability criteria; 2) Padéapproximation.

• Delay-dependent stability criteria 

– They are essentially Lyapunov functions and sufficient conditions for 

asymptotic stability. It is well understood that they are inherently 

conservative. 

– Its accuracy is further compromised since model reduction is always 

accompanied to reduce the cumbersome computational burden in 

analyzing large DCPPS.

– Seldom of them can deal with DCPPS with multiple time delays. 

• Padéapproximation

– Padérational polynomial has been widely used in approximating an 

exponential delay term. Accordingly, wide-area damping controllers 

can be designed while time delay effects are considered.

– The estimation accuracy for a single Padéapproximation is analytic. 

However, it is not the case when multiple exponential delay terms are 

approximated by Padérational polynomials.
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2. Semi-group Discretization-based Eigen-

analysis Framework
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The characteristic equation of DCPPS is: 
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where  and v are the eigenvalue and 

the corresponding right-eigenvector.

Two conclusions on spectrum of DCPPS:

1. There are only a finite number of 

eigenvalues in any vertical strip of the 

complex plane.  

2. The number of eigenvalues lying in the 

right-half complex plane are at most in a 

finite number.
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Advantages:
1. Eigen-analysis is an elementary method 

for small signal stability analysis of power 

system. 

2. It is capable of providing some useful 

metrics / indicators for stability analysis 

and control synthesis,  such as damping 

ratio, oscillation frequency,  participating 

factor, etc.

Challenges:
1. Since the exponential delay terms are 

involved, the characteristic equation of 

DCPPS is transcendental.

2. The equation has an infinite number of 

solutions (eigenvalues), which is basically 

unsolvable by traditional eigenvalue 

methods.

Solution:
To compute a set of rightmost eigenvalues 

of DCPPS by using the semi-group 

discretization-based eigen-analysis methods



Semi-group Dicretization-based Eigen-analysis 

Framework 
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Delayed differential equations 

of DCPPS
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Semi-group operators
1. Solution operator T(h)

2. Infinitesimal generator A

Abstract equations (ordinary

functional equations) in X
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(3) Spectral estimation (sparse 

eigenvalue computation)
ˆ ˆ= ( ), = ( )N N   U U

(4) Spectral correction 

(Newton iteration)

ˆ ˆ,    

** In mathematics, a semigroup is an algebraic structure consisting of a set 

together with an associative binary operation.

Linear multi-step

Implicit Runge-Kutta

Pseudo-spectral differencing



3. Infinitesimal generator discretization (IGD)-

Based Methods for Large DCPPS
1. Theoretical foundation: eigenvalues  of the 

DCPPS equal to those of the infinitesimal 
generator A

2. Core Techniques

• Shift-and-invert transformation: eigenvalues  of 

the DCPPS around a shift point s are transformed 
into the eigenvalues ' of (AN)-1 with the largest 

moduli.

• Kronecker product reformulation: It lays the 

basis of utilizing the inherent sparsity in the 

augmented system state matrices.

• Sparse eigenvalues computation: the Arnoldi

algorithm is utilized to efficiently compute the 

eigenvalues of (AN)-1 with the largest moduli. 
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To lay the basis of utilizing the inherent sparsity of the augmented system 

state matrices, the first block row is reformulated as sums of Kronecker

products between the constant vectors and system state matrices      (i=0, 

1, …, m). 
i
%A

where  denotes the Kronecker product.

Idea of Kronecker product reformulation

After the shift-invert transformation, the discretized approximant matrix to the 
infinitesimal generator A becomes: 
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Compute  ' from (AN)-1 by IRA algorithm

Let the kth Krylov vector be qk，the (k+1)th vector                       can be 

efficiently implemented as follows:

1. Compute r = ΠN qk (N+1)n1；

2. Compress r into a matrix V = [v0, …, vN] n(N+1)，vjn1，

j=0, …, N+1；

3. z = v0；

4. for j = 1, …, N+1

5.

6.

7. z = z - p - w；

8. end

9. Compute                              ;

10. qk+1((n+1) : (N+1)n) = r ((n+1) : (N+1)n).

0 j
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1. The two matrix-vector products can be 

efficiently implemented by using the 

inherent sparsity in system state 

matrices       (i=0,1, …, m). 

2. The computational burden of the EIGD 

algorithm nearly amounts to N+1 times 

of traditional eigenvalue computation.

3. Estimate to eigenvalue of DCPPS is 

restored by                   .

i
%A

1/s  



Test results of Shandong power grid (n=1128)
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For shift points 7j and 13j, r eigenvalues ofN. 

(a) r=50;   (b) r=100; (c) r=200.
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Computational Efficiency Analysis

[# of Arnoldi Iterations / CPU time /s]

Method N dim(AN) Shift s
r eigenvalues computed

50 100 200

EIGD 

(n=1128, 

m=2)

20 23688 j7 7 / 15.37 2 / 24.21 6 / 187.63

20 23688 j10 3 / 7.93 2 / 21.49 9 / 264.57

20 23688 j13 4 / 10.55 2 / 21.47 11 / 317.5

40 46248 j7 7 / 30.34 2 / 46.79 6 / 353.95

40 46248 j10 2 / 11.75 2 / 41.36 9 / 501.91

40 46248 j13 4 / 21.20 2 / 41.26 11 / 602.3
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Computational Efficiency Analysis

[# of Arnoldi Iterations / CPU time /s]

Method N dim(AN) Shift s
r eigenvalues computed

10 20

EIGD 

(n=80577, 

m=4)

20 1692117 j7 7 / 139.44 6 / 347.59

20 1692117 j10 4 / 87.38 3 / 153.76

20 1692117 j13 6 / 140.14 6 / 351.28

16



4. Solution operator discretization (SOD)-Based 

Methods for Large DCPPS
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1. Theoretical foundation: the eigenvalues  of the DCPPS relate to 

those of the solution operator T(h) as a logarithm function.

 
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3. Application of the spectral mapping 

properties to analyze DCPPS

• Reliable stability determination: If the 
largest modulus |1|<1, the DCPPS is 

asymptotically stable. If modulus |1|>1, 

the system is unstable.

• Critical eigenvalue computation: The 
rightmost eigenvalues  of DCPPS with 

the largest real parts can be recovered 
from  with the largest moduli.
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2. Unique properties of the spectral mapping

• The eigenvalues  of DCPPS located on the left-half of the s-plane are 

transformed into those of T(h) situated inside of unit circle on the z-plane.

• For a fixed h, the real part of , i.e., Re(), monotonically increases with ||.
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4. Core technique ------ Rotation-and-multiplication preconditioning

Eigenvalues of the DCPPS with damping ratios less than a given threshold
are transformed into those of T(h) with the largest moduli.
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5. Algorithms

• SOD-PS (Trans. PWRS 2017, 2017)

• SOD-LMS, SOD-IRK  (submitted to Trans. PWRS, 2017)

The preconditioning improves the distribution of eigenvalues  to speed up 

the convergence rate of sparse eigenvalue computation method.

j= e    = he


α is the multiplier



Results of the 16-machine 68-bus test system
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Eigenvalues  of DCPPS Eigenvalues  of the solution operator

1. The accurate eigenvalues  of DCPPS are located on the right of 

the spurious eigenvalues. 
2. For the solution operator, the accurate eigenvalues  are with 

larger moduli and located on the outside of the inner circle.



Results of the Shandong power grid (n=1128)

r = 100 and 120 Eigenvalues of DCPPS computed by SOD-PS and EIGD.

For SOD-PS, θ=17.46ºand α=2; For EIGD, shifts s=j7 and j13.
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Results of North China-Central China 

interconnected system (n=33028)

Methods k s p q N h Dim NIRA/Time(s)

SOD-LMS 3 - - - 20 0.006 1,047,501 177 / 7358.6

SOD-IRK - 2 - - 20 0.006 1,611,540 164 / 19543

SOD-PS - - 3 3 20 0.006 1,128,078 155 / 45009
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Computational Efficiency Analysis

[# of Arnoldi Iterations / CPU time /s]

SOD-LMS method is more efficient, while SOD-IRK and SOD-PS are 

more accurate.



5. Conclusions

• The proposed semi-group discretization-based eigen-analysis 

framework for large DCPPS contains four main parts: 

– Spectral mapping: the eigenvalues  of DCPPS are transformed into 

those of the infinitesimal generator A and solution operator T(h).

– Spectral discretization: A number of numerical schemes, such as 

linear multi-step, implicit Runge-Kutta, pseudo-spectal differencing, can 
be adopted to implement A → AN,  T(h) → TN

– Spectral estimation: sparse eigenvalue computation methods (e.g. 

IRA) can be used to compute a set of critical eigenvalues of DCPS, 

while 1) shift-invert transform, rotation-and-multiplication preconditioning 

are necessary to enhance the convergence speed; 2) the inherent 

sparsity of the augmented system state matrices should be exploited to 

reduce the computational burden.

– Spectral correction: The newton iteration is used to implement           .

• The proposed SOD and IGD methods can efficiently compute a set 

of critical eigenvalues of real-life DCPPSs.
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Thanks!
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