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INTRODUCTION

–OBJECTIVE

+Proliferation of Power Electronics (PE) devices in the pan-European transmission system.

–TIME HORIZONS

+Short to medium term

–Incremental technology-based solutions: Operating the existing electric HVAC system

with a growing penetration of PE devices.

+Long term

–Breakthrough technology-based solutions: Transition towards an HVAC electric system

where all generation and consumption is connected via 100% PE.
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INTRODUCTION

 TASK 4.1: Accurate models for desktop protection studies and HiL tests

• Benchmark system with high PE penetration.

• Accurate converter models and their control systems.

 TASK 4.2: Assessment of the existing protection functions/solutions under high PE

penetration

• Capability of existing short circuit protections. 

• Short circuit magnitude different from SGs depending on:

• Penetration of PE-based renewable electricity generators

• Grid interfaces (high penetration of inverter-connected units)

• HiL (Hardware-in-the-Loop) techniques.

• Performance verification of present protection schemes.
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INTRODUCTION

 TASK 4.3: Development and test of new protection solution when reached high PE

penetration

• Providing solutions to the shortcoming of existing protection systems by introducing new 

protection and technologies.

 TASK 4.4: Proof of Concepts

• The feasibility (technical & economical) of the proposed solutions will be assessed by 

further HiL tests.

 TASK 4.5: Power system design for a secure system with high PE penetration

• Recommendations
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TASK 4.1 DFIG SYSTEM
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TASK 4.1 DFIG CONTROLS
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Crowbar And Chopper Protection
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During Network Unbalance” IEEE Trans. Power Electronics, Vol 23, No 3, 

2008.



TASK 4.1 DFIG CONTROL 
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– Positive Frame:

• GSC reference:

– 𝐼𝑔𝑑
+∗ by DC voltage regulator

– 𝐼𝑔𝑞
+∗ by Grid Code at PCC

• RSC reference:

– 𝐼𝑟𝑑
+∗ by the Grid Code at PCC

– 𝐼𝑟𝑞
+∗ by optimal power reference calculation

– Negatieve Frame:

• GSC reference:

– Stator and GSC active power harmonics components 

equals.

– 𝐼𝑔𝑑
−∗ Zero active power pulsation (𝑃𝑔𝑐𝑜𝑠2= 𝑃𝑒𝑐𝑜𝑠2)

– 𝐼𝑔𝑑
−∗ Zero active power pulsation (𝑃𝑔𝑠𝑖𝑛2= 𝑃𝑒𝑠𝑖𝑛2)

• RSC reference:

– Harmonics components of  active power set to zero

– 𝐼𝑟𝑑
−∗ Torque oscillation minimization (𝑃𝑒𝑐𝑜𝑠2= 0)

– 𝐼𝑟𝑞
−∗ Torque oscillation minimization(𝑃𝑒𝑠𝑖𝑛2 = 0)



TASK 4.1 SIGNALS DURING A FAULT
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TASK 4.2 SHORT CIRCUIT TRANSMISSION LINES

11

–Faults at Line 4-6, 5-7 and 5-4

–The Benchmark model developed reproduces potential problems 

for protections due to high level of penetration of power electronics 



TASK 4.2 HARDWARE IN LOOP
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TASK 4.2 HIL TESTS
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1- protection function
2- number of lines 4-6, 4-5 and 5-7
3 – scenarios (weak and strong grid)x( PE, SG and PE&SG)
4- generation level 40 MW and 200 MW
5 – points of line – 0%, 50% and 90%
6 – type of fault – LG, LLG, LLL and LL
7 – fault resistance 0 ohm and 1 ohm



TASK 4.2 MISSED TRIPS. LINE 4-6 100% PE SCENARIO 
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TASK 4.2 DELAYED TRIPS. LINE 4-6 100% 

PE SCENARIO 
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TASK 4.2 SUSPICIOUS CASES
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Tripping times

Test 

repeated 

Test 

number

Point of 

the fault

Type of 

fault

Generation 

level

Scenario Relay-A Relay-B Relay-C Relay-D

1 6471 70.0% LL 40MW RW_SG 0.031 1.500 1.500 1.500

2 6400 50.0% LL 40MW RW_WG 0.177 1.500 1.500 1.500

3 6484 70.0% LL 200MW RW_SG 0.035 0.125 0.168 0.026

4 6845 95% LL 200MW RW_WG 0.134 1.500 0.267 1.500

5 6692 90.0% LLG 40MW RW_WG 1.500 0.580 0.457 0.444

6 6777 95% LLG 200MW RW_SG 0.037 0.065 0.468 0.237

7 6852 95% LLL 200MW RW_WG 0.338 0.312 0.218 0.194

No operation

Suspicious operation



TASK 4.2: IMPEDANCE TRAJECTORY  AND RMS CURRENT 
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TASK 4.3 HYBRID RELAY BASED S-TRANSFORM 
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TASK 4.3 CASE 1: DFIG-40MW, STRONG GRID. 

FAULT: LN, 70%, 0Ω
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TASK 4.3 CASE 1: DFIG-40MW, STRONG GRID. 

FAULT: LN, 70%, 0Ω
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TASK 4.3 CASE 1: DFIG-40MW, STRONG GRID. 

FAULT: LL, 70%, 0Ω
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TASK 4.3 CASE 1: DFIG-40MW, STRONG GRID. 

FAULT: LL, 70%, 0Ω
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TASK 4.3 CASE 1: DFIG-40MW, STRONG GRID. FAULT: 

LLL, 70%, 0Ω
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TASK 4.3 CASE 1: DFIG-40MW, STRONG GRID. FAULT: LLL, 

70%, 0Ω
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TASK 4.3 PERFORMANCE COMPARISON

Priority Variables

1 Number of lines 2

2 Scenarios 6

3 Generation Level 2

4 Point of the line 6

5 Type of fault 4

6 Fault Resistance 2

7 Repetition 3

TOTAL NUMBER OF CASES 3456
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CONCLUSIONS
•An advanced algorithm based on FDST is presented 

- Can be used to enhance the performance of distance protection 

- Fault detection is very sensitive and fast 

- Overcomes the difficulties that present commercial relays perform during the detection of 

ungrounded faults 

- Low computation burden used makes the algorithm suitable to be implemented in an actual 

distance relay 

- The S-energy indicator is not vulnerable to different fault types, fault inception angles and 

fault resistances. 

- In order to accurately identify any fault in the protected TL, the FDST should be combined 

with other indicators such as phase selection, directionality and impedance. 

- The results of the HR model are compared to the performance of four different commercial 

relays. The unexpected behavior like no trips, delayed trips or overreach are less than 0.12% 

when Wind turbines are near the relay.
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