Sep. 18, 2019

INTELLIGENT PROTECTION of MICROGRID

Professor Chul-Hwan Kim

Department of Electrical & Electronic Engineering Sungkyunkwan University

Contents

I. Introduction

- **II.** Research trend and previous work
- **III.** Contributions
- **IV. Background theory**
- **V.** Proposed microgrid protection scheme
- **VI.** Simulation results

VII. Conclusions

I. Introduction

☐ Microgrid (MG) :

- Effective way to integrate the increasing penetration of distributed energy resources (DERs)
- Small scale medium or low voltage distribution network
- Normally work in grid-tied mode
- Can operate in Islanded mode \rightarrow Faults in main utility

□ Benefits of Microgrids:

- Reduce the power losses
- Provide uninterrupted service to customers
- Improve reliability & power quality
- Reduced emissions of greenhouse gases

I. Introduction

A. Challenges associated with microgrid operation

□ MG operation is different from traditional distribution networks:

- Bi-directional power flow in the feeders
- Continuous switching between radial and looped topologies
- Various operating scenarios \rightarrow Grid-tied mode, and Islanded mode
- □ The complex and multi-mode operation → protection and control challenges
- □ MG Protection can be divided into two sub-problems
 - Anti-islanding protection/Islanding detection
 - Fault protection
 - Detection
 - Classification
 - Location of faults

I. Introduction

B. Problem statement

□ Fault protection:

- **Bidirectional power flow** in the MG feeders
- Different fault current level in different operating modes
- Microgrid switching between radial and looped topologies
- Protection methods of distribution network → Not applicable to MG

II. Research trend and previous work

A. Existing microgrid protection schemes

II. Research trend and previous work

B. Problems of existing microgrid protection schemes

- Local protection schemes cannot guarantee protection in both modes of operation
- Communication-based scheme
 - Required synchronized measurement
 - Exposed to communication failure

Intelligent schemes

- Use fixed basis function to extract fault features
- Cannot provide fault phase information
- Did not consider the time-sequence of fault current signal
- Most of the intelligent schemes have been developed for low voltage MG
- Prone to communication failure

III. Contributions

- □ Intelligent Scheme: A Novel intelligent islanding detection and fault protection scheme for MGs based on empirical wavelet transforms (EWT) and long short-term memory network (LSTM) is proposed
- ❑ Adaptive Feature Extraction: Unlike existing methods, the proposed scheme extracts the features using signal-adaptive filter banks. The wavelet filter banks in the EWT are built based on the information contained in the input signals
- Extension of EWT concept for islanding detection: The EWT concept is extended to islanding detection problems to calculate the features from the three-phase voltage signals
- □ Long short-term temporal features: The proposed scheme uses LSTM to extract the long and short-term temporal dependencies within the voltage signal
- □ Comprehensive Method: The proposed method can protect MGs in all operating modes and can detect islanding events with small non-detection zone
- □ The method can work in noisy conditions and does not use communication

A. Empirical Wavelet Transform (EWT):

EWT designs signal-dependent adaptive wavelet-filters , which decompose a signal into empirical mode

 The empirical modes (Ems) are centered around a specific frequency with a compact frequency support

□ The empirical wavelet and scaling function are:

$$\Psi_{i}(\omega) = \begin{cases} 1, & \text{if } |\omega| \leq (1-\omega)\omega_{i} \\ \cos(\frac{\pi}{2}\beta(\gamma,\omega_{i})), & \text{if } (1-\omega)\omega_{i} \leq |\omega| \leq (1+\omega)\omega_{i} \\ 0, & \text{Otherwise} \end{cases}$$
(1)
$$\varphi_{i}(\omega) = \begin{cases} 1, & \text{if } (1+\omega)\omega_{i} \leq |\omega| \leq (1-\omega)\omega_{i+1} \\ \cos(\frac{\pi}{2}\beta(\gamma,\omega_{i+1})), & \text{if } (1-\omega)\omega_{i+1} \leq |\omega| \leq (1+\omega)\omega_{i+1} \\ \sin(\frac{\pi}{2}\beta(\gamma,\omega_{i})), & \text{if } (1-\omega)\omega_{i} \leq |\omega| \leq (1+\omega)\omega_{i} \end{cases}$$
(2)
$$\beta(x) \text{ is an arbitrary } \mathcal{C}^{k}([0,1]) \text{ function } \omega = \text{frequency} \end{cases}$$
(1)

Power System Innovation Lab.

Start

Apply FFT to compute the

spectrum of the analyzed signal

Search all local Maxima in the

A. Empirical Wavelet Transform (EWT) – Cont.

$$\beta(\gamma,\omega_i) = \alpha(\frac{|\omega| - (1-\gamma)\omega_i}{2\gamma\omega_i})$$
(3) $\gamma < \min_i\left(\frac{\omega_{i+1} - \omega_i}{\omega_{i+1} + \omega_i}\right)$
(4)

After obtaining empirical scaling and empirical wavelet function, the empirical modes are calculated using:

$$f_0(t) = W_f^{\varepsilon}(0, t) * \phi_1(t)$$
(5)
$$f_k(t) = W_f^{\varepsilon}(k, t) * \psi_k(t)$$
(6)
$$W_f^{\varepsilon}(0, t) : \text{Approximation coefficients} \\W_f^{\varepsilon}(k, t) : \text{Detail coefficients} \\k : \text{Number of modes}$$

□ First three modes contains most of the signal information

This study considers first three modes only

 \Box Hilbert transform \rightarrow Instantaneous amplitude of each empirical mode

 \rightarrow Instantaneous frequency of each empirical modes

B. Long short-Term Memory network (LSTM)

- □ LSTMs are a type of recurrent neural network (RNN)
- RNNs receive inputs, update the hidden states depending on the previous computations, and make predictions for every element of a sequence
- RNNs are a neural network with memory

B. Long short-Term Memory network (LSTM) – Cont.

- An LSTM is a special kind of RNN architecture, capable of learning longterm dependencies
- LSTM networks outperform RNNs and Hidden Markov Models
- □ This is due to **the multiplicative gate units** that learn to open and close access to the constant error flow

- □ LSTM networks introduce **a new structure** called a memory cell
- □ The memory cells store the previous information and help in learning long term features from the input
- □ The short term feature learning capability is an inherited property of RNNs

B. Long short-Term Memory network (LSTM) – Cont.

- Comprises of memory units
 - Memory cell stores the temporal state of the network
 - Input gate regulate input to update the cell
 - Forget gate decides about the information to be discarded from previous memory
 - Output gate controls the information to be taken as output from the current state of memory cell

- □ Input: Three-phase current Signal
- $\Box \text{ EWT} \rightarrow \text{Features extraction}$
- □ Three units
 - Fault detection unit
 - Fault classification unit
 - Triggered in case of unbalanced fault
 - Fault location estimation unit
 - Activated after fault detection
- $\Box \text{ Each unit } \rightarrow \text{EWT based LSTM network}$
- Finally, the generated fault information can be employed for fault isolation and recovery

A. Feature extraction

- □ First, EWT is used to decompose each phase current into EMs
- Then, the following features are extracted from the first three EMs of each phase
 - 1 Minimum value 5. Standard deviation
 - 2 Maximum value Coefficient of variation 6.
 - 3. Root-mean square (RMS)
 - 4. Energy 8. Entropy
- 7. Kurtosis
- For each cycle of the three-phase current 72 feature are extracted
 - 3 (empirical modes) × 8 (features)× 3 (phases)=72
- The generated features are later inputted into the LSTM networks of each unit to develop the fault information

B. Fault detection unit

- □ Input: one cycle of Three-phase currents
- **Output:** Three 0,1 indicators (no-fault, unbalanced fault, and three-phase fault)
- Dropout helps in mitigating overfitting
- □ LSTM layers extract the temporal dependencies from the fault signals

Fig. 3. Fault detection unit

C. Fault classification unit

- Triggered:
 - If the fault detection unit detects an unbalanced fault in the MG
- Structure is same except last FC layer
- Last FC layer :
 - Six 0-1 indicators
 - represent the status of each unbalanced fault

Fig. 4. Fault classification unit

D. Fault location estimation unit

- □ Activated:
 - If the fault detection unit **detected** an unbalanced/three-phase fault
- Structure is same except last FC layer
- □ Last FC layer:
 - Regression Task
- Output:

A. IEC microgrid test system

Table 1. Conditions for simulating fault conditions

Parameter Details	Count
Fault on different distribution lines (DL-1, DL-2, DL-3, DL-4, and DL-5).	5
Fault at different locations (20%, 35%, 50%, 65% and 80%).	5
Fault resistances (0.1, 20, 45, and 75).	4
Fault inception angle (0°,45°, 90°, and 180°).	4
Topology (radial and looped).	2
Operating modes (grid-tied /islanded).	2
Types of Fault	10
Total Fault Cases	16000

Table 2. Conditions for simulating no-fault conditions

Parameter Details	Count
Abrupt load change.	6
Operating mode (Grid-tied/islanded mode)	2
Topology (radial/looped).	2
Capacitor switching at load buses and PCC.	6
Various DER penetration levels	2
Total no-fault cases	288

B. EWT decomposition

Fig. 7. First three empirical mode of three-phase current during capacitor bank switching at 0.25

Fig. 8. First three empirical mode of three-phase current when a AG fault hits the MG at 0.27sec

C. Fault detection unit

Fig. 9. Confusion Matrices of the testing dataset of fault detection unit during: (a) grid-tied mode, (b) islanded mode

D. Fault classification unit

Predicted Fault Class	AG	238 11.0%	3 0.1%	1 0.0%	3 0.1%	5 0.2%	2 0.1%	94.4% 5.6%
	BG	0 0.0%	237 11.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	100% 0.0%
	CG	1 0.0%	0 0.0%	239 11.1%	0 0.0%	0 0.0%	0 0.0%	99.6% 0.4%
	AB	1 0.0%	0 0.0%	0 0.0%	477 22.1%	0 0.0%	0 0.0%	99.8% 0.2%
	AC	0 0.0%	0 0.0%	0 0.0%	0 0.0%	474 21.9%	1 0.0%	99.8% 0.2%
	BC	0 0.0%	0 0.0%	0 0.0%	0 0.0%	1 0.0%	477 22.1%	99.8% 0.2%
		99.2% 0.8%	98.8% 1.2%	99.6% 0.4%	99.4% 0.6%	98.8% 1.2%	99.4% 0.6%	99.2% 0.8%

40 40 CO 40 40 80

Actual Fault Class

(b)

Fig. 10. Confusion Matrices of the testing dataset of fault classification unit during: (a) grid-tied mode, (b) islanded mode

E. Fault location unit

Fig. 11. Comparison of the actual fault location vs estimated fault location: (a) For DL-1, (b) For DL-2, (c) For DL-3, and (d) For DL-4

F. Comparison with existing schemes

Table 5: Comparison with existing fault detection schemes in grid-tied mode

Scheme	Dependability	Security	Accuracy
Support vector machine [12]	99.60%	97.06%	98.33%
Decision Tree[12]	99.80%	98.24%	99.02%
Proposed Scheme	99.96%	100.0%	99.97%

 $Dependability = \frac{Total \ fault \ cases \ predicted}{Actual \ fault \ cases}$

 $Security = \frac{Total \ no fault \ cases \ predicted}{Actual \ no fault \ cases}$

Table 6: Comparison with existing fault detection schemes in Islanded mode

Scheme	Dependability	Security	Accuracy
Support vector machine [12]	100.0%	98.06%	99.03%
Decision Tree [12]	99.60%	99.35%	99.47%
Proposed Scheme	99.97%	100.0%	99.97%

VII. Conclusions

- A novel intelligent islanding detection and fault protection for MGs based on EWT and LSTM was proposed
- The proposed scheme extracted the features from the power system signals using signal adaptive wavelet filters
- Long-term temporal features within a cycle were extracted using LSTM networks
- **Extensive simulation** were performed to verify the proposed schemes
- The results showed that the proposed schemes provided better performance as compared to existing IDMs and MG protection techniques
- The proposed schemes does not require any communication link for their operation

Thank you for your attention !

