Data Driven Power System Modeling and Analysis based on PMU/WAMS

Chao Lu Tsinghua University Sept. 18, 2019

- Power system oscillation analysis and control
 2. Dynamic load parameter identification
 3. Online linear state estimation
- 5. Online linear state estima
- **4. Further Work**

State Grid, before 2010: difficult to operate a chained AC grid with transmission distance > 3000km, because of the low frequency oscillation (0.25~0.3Hz)

Inter-area low frequency oscillations in State Grid:

Low frequency oscillation events: 2005.10.29, 2006.7.1, 2007.1.29 ...

2005.10.29, tie-line power oscillation lasting for 5 minutes

Because huge capacities of wind and thermal power plants are connected through long distance transmission lines, the damping ratio of dominant oscillations keeps declining in the recent years.

青华大学电机系

The damping ratio keeps declining from 2008 to 2013

China Southern Power Grid, before 2017:

清华大学电机系

- PMUs were installed in more than 4000 substations and power plans. (2018.12)
- WAMS master stations are deployed in all provincial dispatch centers (>40).
- For damping oscillations, it is efficient to suppress the inter-area modes using PMU/WAMS.

1.2 Introduction: a successful case

Power system oscillation dynamic ID and control based on PMU/WAMS

- ID of power system oscillation modes and mode shapes
- ID of oscillation pathway and source
- Optimal power flow improving damping based on sensitivity ID
- Wide-area damping adaptive controller design based on ambient signal ID
- Analysis of the random communication time delays on wide-area control

Implementation and commission of wide-area control system in real system

1.2 Oscillation ID based on Ambient Signals

Modes	Freq/Hz	DR/%
1 YN/GZ vs. GD	0.402	21.7734
2 YN vs. GZ	0.5616	3.797
3 HN vs. Main Grid	0.8142	3.3102

7*24 monitoring and pre-warning of weakly damped oscillation modes can be realized, not just oscillation detection after it happened.

1.3 Wide-area HVDC damping control in CSG

Key issues:

- 1. AC/DC interconnected system damping control strategies;
- 2. Wide-area controller structure design;
- 3. Multiple damping controllers coordination;
- 4. Time delay induced new oscillation modes analysis;
- 5. Wide-area random time delay adaptive compensitation.

1.3 Wide-area HVDC damping control in CSG

- Multiple disturbances in different conditions:
 - HVDC monopole blocks (700MW)
 - 500kV key inter-area tie-line tripping.

1.4 Proposed Framework

Power system oscillation analysis and control

- 2. Dynamic load parameter identification
- **3. Online linear state estimation**
- **4. Further Work**

parameters

□ The great influence of load model on power system stability

Type of motors	R _s /pu	X _s /pu	X _m /pu	R _s /pu	X _s	s ₀	Α	С
Type I motor	0	0.295	3.5	0.02	0.1 2	2	0.0 116	0.1 5
Type II motor	0	0.120	3.5	0.02	0.1 2	2	0.0 116	0.1 5
Type III motor	0	0.180	3.5	0.02	0.1 2	2	0.0 116	0.1 5

Different sets of induction motor

Composite Load Model

The composite load model (CLM) is proposed by China Electric Power Research Institute that can fit four large disturbance experiments in Northeast China Power Grid The stability limit of Liaoning-Jinli section (adopting different load models)

³ 2.1 Background

□ The States of load parameter in Chinese Power Grid

- CSG load model for simulations :50% Impedance+50% Induction Motor
- SG' s concerns:

□ 但是,华东电网"大直流弱受端"的稳定特性,特别是苏州电网等对负荷模型 敏感的地区,要求更为精确的负荷模型,能够反映各计算节点不同季节、时段 负荷特性和负荷量的变化

因此,当前的手工建模方法,无法满足华东电网稳定计算需求,迫切需要 通过自动化的手段,实现在线负荷建模,及时跟踪负荷特性变化,提高负 荷建模工作的时效性。

- More accurate load model is demanded to reflect the changes of loads and the characteristics at different buses, in different seasons & periods of time.
- There is a pressing need to accomplish online load modeling by methods of automation to track the change of load characteristics in time.

Research and Progresses of WECC

Figure 4-1: composite load model data requirements

A) Distribution Equivalent Data

The approach of constructing the distribution equivalent was developed by **Pacific Gas and Electric (PG&E)**.

The distribution equivalent is calculated to meet **the feeder design and performance characteristics**, including: feeder voltage drop, RX ratio, end-use utilization voltage range, distribution losses, and shunt compensation split between the substation and the feeder end.

B) Load Model Fractions / Load Model Composition

WECC LMTF used several sources (several reports) for load composition analysis to develop a simplified version of the load composition model, called "**light**" version.

- ✓ 5 typical days
- ✓ 12 climate zones
- ✓ 4 types of feeder

ID	Climate Zone	Representative City
NWC	Northwest Coast	Seattle, Vancouver BC
NWV	Northwest Valley	Portland OR
NWI	Northwest Inland	Boise, Tri-Cities, Spokane
RMN	Rocky Mountain North	Calgary, Montana, Wyoming
NCC	Northern California Coast	Bay Area
NCV	Northern California Valley	Sacramento, Fresno
NCI	Northern California Inland	
SCC	Southern California Coast	LA, San Diego
SCV	Southern California Valley	LA, San Diego
SCI	Southern California Inland	LA, San Diego
DSW	Desert Southwest	Phoenix, Riverside, Las Vegas
HID	High Desert	Salt Lake City, Albuquerque, Denver, Reno

- -Typical summer day
- Hot summer day
- Cool summer day
- Typical shoulder (spring/fall) day
- Typical winter day

ID	Feeder Type	Residential	Commercial	Industrial	Agricultural
RES	Residential	70 to 85%	15 to 30%	0%	0%
СОМ	Commercial	10 to 20%	80 to 90%	0%	0%
MIX	Mixed	40 to 60%	40 to 60%	0 to 20%	0%
RAG	Rural	40%	30%	10%	20%

⁵2.1 Background

Two ideas of Measurement-Based Method

varying and spatial distribution characteristics of load.

2.2 Dynamic Load Parameter Identification

2. Ambient Signal Based Load Parameter Identification : Identifiability

ambient signal: A small amplitude fluctuation in response to random changes such as load change in normal operation state of the power grid.

□ Identifiability Analysis:

	Parameter	Identifiability Index
	X	0.34
\Rightarrow	Х'	0.12
	$T_{d\theta}$	0.43
	R	0.19

 \checkmark Identifiability improves as the length of data segment extends

 \checkmark Identifiability improves as disturbance amplitude increases

 \checkmark Identifiability gets worse as measurement error increases

Identification Algorithm

- > An on-line identification method combining Prediction Error with Differential Evolution is proposed.
 - Solve the state variables at time k
 using PMU data & parameters, then
 predict the state variables & output
 variables at time k+1
 - Using DE to optimize the load parameters to minimize the sum of deviations squares between predicted and measured power

State Equation
$E_{d}(k) = \frac{(P(k) - \frac{U^{2}(k)}{R})X'U_{q}(k) - Q(k)X'U_{d}(k)}{U^{2}(k)} + U_{d}(k)$
$E_{q}(k) = \frac{-Q(k)X'U_{q}(k) - (P(k) - \frac{U^{2}(k)}{R})X'U_{d}(k)}{U^{2}(k)} + U_{q}(k)$
$s(k) = \frac{\dot{E}(k) - \dot{E}(k-1)}{T} + \frac{(-\dot{E}(k-1) + j(X-X')\dot{I}(k-1))*T_{d0}}{j\dot{E}(k-1)\omega_0}$

2.2 Dynamic Load Parameter Identification

Data preprocessing & Parameter post-treatment

Overall framework

青华大学电机系

2.2 Dynamic Load Parameter Identification

Modified K-Medoids Clustering For Load Model Parameter Extraction

Targets for Load Model Parameter Extraction

- Solve the time-varying characteristics of power load.
- Get typical load model parameters under typical operation modes.

The Pseudo-code of the Partitioning Around Medoids Algorithm

Algorithm: K-medoids

Input: Dataset with *n* samples

Number of clusters k

Output: Class labels of all samples

(1) **for** i = 1 to *N* **do**

- (2) initialize cluster centers
- (3) repeat
- (4) assign the sample to its closest center
- (5) calculate the cost (C) of replacing a center sample with a non-center

sample

- (6) **if** *C*<0
- (7) update the new cluster center
- (8) endif
- (9) until all the center samples and non-center samples are considered

(10) endfor

Algorithm modifications

• The distance between each sample is defined as the fitness of the center sample parameters and the non-center sample measurements:

$$it = 1 - \frac{1}{2} \left(\frac{\left\| P_p - P \right\|^2}{\left\| P - mean(P) \right\|^2} + \frac{\left\| Q_p - Q \right\|^2}{\left\| Q - mean(Q) \right\|^2} \right) \qquad C_{ih} > 0$$

- The update criterion of the center sample:
- the results with the largest fitness will be the final cluster results.

2. Hybrid Real-time Simulation Test

Hybrid Simulation Platform: Simulation System, Communication Network, PMU, etc. \checkmark

Identified parameters with systematic error

系统误差(%)	Х	X'	T _{d0}	R	拟合度
0	0.727	0.282	0.161	0.460	1
0.2	0.731	0.284	0.161	0.463	0.999
0.5	0.716	0.279	0.160	0.453	0.971
1.0	0.750	0.273	0.162	0.448	0.952

Identified parameters with random error under different disturbance amplitudes

扰动幅值(%)	$\mu(X)$	$\mu(X')$	$\mu(T_{d0})$	$\mu(R)$
真实值	0.727	0.282	0.161	0.460
1	0.698	0.284	0.123	0.440
2	0.726	0.284	0.147	0.455
3	0.724	0.282	0.154	0.458
4	0.726	0.282	0.159	0.460

High tolerance for systematic error. Accurate identification results can be obtained from small disturbances.

 \checkmark

System Implementation and Verification: CSG Pilot Project

- \checkmark 4 substations have completed field installation ,commissioning and operation.
- ✓ Substations are connected to the master station through a dedicated channels. Results and data are uploaded in real time. The measurement, identification and communication are operating normally.
- ✓ On October 18, 2018, the Power Dispatch and Control Center of China Southern Power Grid approved the formal commission of this system.

Cabinets at project site

D Typical Results

✓ Overall Situation Analysis: take the identification results of October 10, 2018 at 15:30 as an example, 50/58 500kV Stations can obtain effective results, the coverage ratio is 86.2%.

No.	Plant	Device	Time	X	Χ'	T _{d0}	R	slip
1	香山站	#2B-高	2018-10-10 15:30:38	0.686	0.179	0.072	0.142	0.034
2	横沥站	#4B-高	2018-10-10 15:29:18	1.328	0.408	0.065	0.176	0.043
3	香山站	#1B-高	2018-10-10 15:30:37	0.680	0.173	0.078	0.145	0.034
4	花都站	#2B-高	2018-10-10 15:28:54	1.018	0.172	0.165	0.155	0.015
5	砚都站	#2B-高	2018-10-10 15:31:29	2.107	0.545	0.057	0.346	0.047
6	横沥站	#3B-高	2018-10-10 15:29:17	1.546	0.444	0.171	0.195	0.014
7	库湾站	#3B-高	2018-10-10 15:31:03	1.434	0.421	0.104	0.295	0.019
8	加林站	#4B-高	2018-10-10 15:30:24	2.213	0.373	0.369	0.233	0.029
9	玉城站	#2B-高	2018-10-10 15:28:52	2.908	0.236	0.108	0.589	0.019
10	香山站	#3B-高	2018-10-10 15:27:49	1.286	0.203	0.138	0.184	0.014
11	崇文站	#4B-高	2018-10-10 15:30:31	2.575	0.442	0.216	0.296	0.010
12	祯州站	#3B-高	2018-10-10 15:30:20	1.410	0.326	0.091	0.582	0.003
13	福园站	#3B-高	2018-10-10 15:31:23	2.425	0.507	0.607	0.424	0.057

□ Application and Verification of Load Identification Parameters

 At 16:03:20 on August 19, 2018, the 500 kV Shuixiang-Guancheng Line A tripped due to short circuit. The parameters of different load nodes at 220kV in BPA simulation are replaced by the parameters equivalented from 500kV load parameters identified with PMU measurement.

Multiple-Area Replacement of Load Parameters

	分区	X	<i>X'</i>	T' 40	R	nct	РСТ	 广西省分区	X	<i>X</i> ′	$T'_{d\theta}$	R	pct	PCT
		1 702	0.144	0.225	0.000	0.57		 崇左变	2.472	0.934	2.625	2.159	0.87	
) 肖珀	1./93	0.144	0.335	2.222	0.57	-	 逢宜变	5.888	0.456	0.161	2.678	0.81	
广州区域	木棉站	1.840	0.148	0.362	3.457	0.70	0.71	 海港站	1.549	0.482	1.185	1.194	0.75	0.78
	狮洋站	1.056	0.300	0.994	4.385	0.89		 平果站	1.374	0.464	1.122	0.613	0.58	
	水乡站	0.747	0.224	1.236	2.577	0.77		 						
东莞区域	横沥站	0.927	0.299	1.174	2.663	0.81	0.75	 云南省分区	X	Χ'	$T'_{d\theta}$	R	pct	PCT
	纵江站	1.621	0.129	0.681	4.219	0.72	-	永丰变	0.740	0.138	0.830	2.959	0.79	
	福园站	8.429	0.470	0.563	1.515	0.87		 多乐站	1.717	0.551	1.299	3.526	0.91	0.83
惠州区域	博罗变	6.555	0.390	1.445	2.018	0.89	0.88	 草埔站	1.967	0.580	1.120	2.284	0.82	
	汕头变	2.414	0.195	0.340	1.410	0.54								
汕头区域	胪岗站	1.992	0.760	0.566	2.679	0.87	0.72	 贵州省分区	X	Χ'	$T'_{d\theta}$	R	pct	PCT
	四个小	6.860	1 563	0.824	1 200	0.01	/	福泉站	1.020	0.391	0.524	1.493	0.70	
		0.800	1.303	0.624	1.309	0.91	/	 施秉变	0.938	0.180	0.418	1.706	0.52	
	卧龙变	2.133	0.103	0.451	1.134	0.56	/	 息烽变	4.579	0.822	1.710	2.015	0.87	0.71
总加权 pct							0.74	 铜仁站	2.511	0.216	0.473	0.971	0.55	

PCT in the tables is the static load ratio. The actual identification of the motor range in this area is 15~30%, which is much smaller than the current 50% of the typical load parameters, showing that conservation of typical load parameters is great!

大学电机系

Further verification from the view of stability limit

- > Use the operation condition of CSG on 2018.8.19.
- Set up a three phase short-circuit fault on Baoan-Pengcheng A-line.
- Shenzhen area is a low voltage area after the fault occurs. Based on the engineering criterion of transient voltage stability of CSG, the transmission stability limit of Guizhou-Guangdong section can be obtained by observing the voltage curve of 220 kV Meilin station.

	AC Lines	DC Lines
Guizhou- Guangdon g	黎平-桂林 Liping-Guilin	高坡-肇庆(高肇直流) Gaopo-Zhaoqing
Section	独山-柳东 Dushan-Liudong	兴仁-宝安(兴安直流) Xingren-Baoan

3. Temporal Statistics of Load Identification Results

Identification Results of Kuwan (2018.10.10)

Output value fits well with measurement.

Identification Results of Chashan (2018.4.28 & 4.29)

□ Modified K-Medoids Clustering For Load Model Parameter Extraction

Cluster Results of Chashan 220kV substation identification parameters

The cluster results of the load characteristic on April 28th and 29th

Conclusions

- Identified parameters in the same time are grouped into the same cluster.
- \checkmark The center parameter of each cluster is from different hours.
- ✓ Both the results in the figure and the chart on the right side
 indicates the effectiveness of the modified k-medoids method.

The Cluster Centers of the 10	80-set Load Mode	el Parameters	Identified on
А	pril 28 th and 29 th		

Х	X ′	T_{d0}	R	Time
2.3912	0.7519	1.1683	0.1307	April 28th 12:29
2.6696	3.7616	2.4936	0.1912	April 29 th 01:58
0.9363	0.4060	6.9526	0.1233	April 29th 09:16

Power system oscillation analysis and control 2. Dynamic load parameter identification 3. Online linear state estimation (SE) 4. Further Work

Problem of traditional State Estimation — A Case in CSG

- On August 19, 2018, around 16:03:22, there was an outage in the 500kV Line A between Shuixiang and Guancheng (水莞甲线) because of an inter-phase short-circuit fault.
- Because the fault of Line A, The power flow had transferred to Line B. Thus, Line B had a large increase in power with multiple cycles of oscillations. There were more than 1-minute time when the actual line transmission power has risen to more than 2100 MW but the SCADA-based SE results are less than 1400 MW.

- SCADA Measurements of individual snapshots are weakly synchronized;
- The SE solutions may suffer from divergence problems and it might turn out not to be the available power flows because of nonlinearity of the estimation model.
- The estimation intervals usually are minute-long, which cannot satisfy the requirement of tracking system dynamics;
- SE calculations/results depend on network parameters and topology, but gird network parameters and topology is actually derived by measurements, which may be incorrect.

Modern power systems are becoming more complicated and challenging. For the sake of comprehension of system dynamic behaviors and further analysis, assessment and control, it is quite urgent to quickly obtain accurate dynamic power flows of the whole system

Problem of traditional State Estimation — A Case in CSG

Topology analysis is completed based on switch/breaker measurements. The operation interval is usually 5 minutes or more, which cannot quickly reflect the real-time change of the grid topology.

- Transmission Line parameters are usually offline obtained using specific instruments during construction or maintenance. Thus Timeliness is poor and there may be errors:
 - Measurements Errors
 - Managements Errors

清华大学电机系

id	name 🔻	r	x	bch
249181	花从乙线	0.0023	0.485	119.6212
249184	花从甲线	0.0229	0.49	122.3776

3.2 PMU-Based State Estimation

- TSINGHUT SINGHUT
- We systematically develops a PMU-based real-time state estimation theory and system in a realistic large-scale power grid, including an improved linear state estimation algorithm, a real-time topology analysis approach based on PMU measurements, a practical bad data identification method and so on.

3.2 PMU-Based State Estimation

Error Characteristic of Phasors : $\left|\dot{\varepsilon}_{i}\right| = \left|\dot{Z}_{iT} - \dot{Z}_{i}\right| = \left|Z_{iT}e^{j\theta_{iT}} - (Z_{iT} + e_{i1})e^{j(\theta_{iT} + e_{i2})}\right| = Z_{iT}\sqrt{2(1 + e_{i1})(1 - \cos e_{i2}) + e_{i1}^{2}}$ $E(|\dot{\varepsilon}_{i}|) = Z_{iT}E(\sqrt{2(1+e_{i1})(1-\cos e_{i2})+e_{i1}^{2}}) = t_{i}Z_{iT}$ $D(\left|\dot{\varepsilon}_{i}\right|) \approx Z_{i\mathrm{T}}^{2} \left(\sigma_{1}^{2} + \sigma_{2}^{2} - t_{i}^{2}\right)$ $t_{i} = E\left(\sqrt{2(1+e_{i1})(1-\cos e_{i2})+e_{i1}^{2}}\right)$

Phase more to

measurement error
$$e_{i2}$$
 contributes
o $|\dot{\varepsilon}_i|$ than magnitude error e_{i1}

3.2 PMU-Based State Estimation

Joint identification and correction of erroneous parameters and bad data

- The identification and correction are performed simultaneously using normalized Lagrangian multiplier (LM) and normalized residuals (rN), and the iterative state estimation is performed until there is no abnormality.
- Basic idea: statistical hypothesis test, probabilistically separable indicator

$$\begin{cases} \min J(x, p_e) = \frac{1}{2}r(x, p_e)^T R^{-1}r(x, p_e) \\ s.t. \quad p_e = 0 \\ L(x, p_e, \lambda) = \frac{1}{2}r^T R^{-1}r - \lambda^T p_e \\ \lambda = -H_p^H R^{-1}r \qquad \text{First order} \\ r = \Delta z - \Delta \hat{z}' \\ = \Delta z - K\Delta z - SH_p p_e \\ = S(\Delta z - H_p p_e) \\ = S(H\Delta x + e - H_p p_e) \\ = Se - SH_p p_e \end{cases}$$

$$\begin{split} \lambda &= -H_p^H R^{-1} r & \xrightarrow{i} & \xrightarrow{i$$

$$\Lambda = H_p^H R^{-1} S H_p$$

$$\lambda_i^N = \frac{\lambda_i}{\sqrt{\Lambda_{ii}}} \sim N(0,1)$$

$$P_{corr,i} = P_{bad,i} - \frac{\lambda_i}{\Lambda_{ii}}$$

$$LM Sensitivity matrix$$

$$M = \frac{\lambda_i}{M_{ii}}$$

$$M = \frac{\lambda_i}{M_{ii}}$$

Simulation Results on Guangdong 500kV Grid

Table 1 The average time of completing state estimation

Method	WLS	CLS	CWLS	CRLS
time	0.004847	0.000233	0.001447	0.001387

Table 2 The TVE index of the four method

Method	WLS	CLS	CWLS	CRLS
Magnitude	1.482106	16.309487	1.264982	1.415835
Phase	0.277303	0.523769	0.279085	0.272706
TVE	0.153488	1.083342	0.139669	0.146323

Table 3 The TVE index under different level of noise

	WLS	CLS	CLWS	CRLS
Test 1	0.282221	2.045667	0.251195	0.272447
Test 2	0.109075	0.550314	0.103528	0.100756
Test 3	0.164529	1.026709	0.146293	0.151672

Fig.1 The realistic GD provincial 500kV power grid

- The computational efficiency and robustness of the CWLS algorithm are better than that of the WLS algorithm.
- The CWLS algorithm can improve the accuracy of the measurements especially the phase angle measurements.

Joint Identification of bad parameter and data

IEEE case: verify the validity of the maximal normalized Lagrangian multiplier (NLM), add 20% error simulation error parameters to the specified branch parameters, no bad data,

	IEEE 14		IEEE 57		IEEE 118	
Wrong parameter	r1-2	x2-5	r4-6	x12-13	r19-20	x79-80
Max NL	6.236	25.546	5.097	22.3456	4.596	44.568
Identifed data	r1-2	x2-5	r4-6	x12-13	r19-20	x79-80
Estimated Value	0.0192	0.1694	0.0427	0.0576	0.0635	0.0688
True Value	0.0194	0.1739	0.0430	0.0580	0.0630	0.0704
Relative Error	1.33%	2.09%	0.75%	0.64%	0.95%	2.34%

500kV CSG Case: Multiple parameters and bad data exist at the same time, and there is strong correlation, 4 bad parameters ([r77; x111; b239; x300]) and 3 bad data (U20, U77, U165), The results of the identification are as follows:

No.	Identified Data	max r/λ	Estimated Value	True Value	Relative Error
1	b239	12.603421	0.313029	0.284660	0.099660
2	b239	6.289312	0.298827	0.284660	0.049769
3	r77	5.192040	0.000195	0.000195	-0.000242
4	x300	4.591293	0.002575	0.002640	-0.024444
5	x111	4.284585	0.004183	0.004300	-0.027096
6	b239	3.147370	0.291733	0.284660	0.024847
7	U20	3.030690	1.008320	1.007722	0.000594
8	U77	3.033639	0.864652	0.864335	0.000366
9	U165	3.038104	0.927477	0.927560	-0.000089

清华大学电机系

Implementation of PMU-based real-time SE in 500kV network of CSG with the interval of 40ms.

3.3 PMU-based SE Project in CSG

Field Results under Fault Circumstances

- The figures shows Line B' s voltage and power 5-minute traces of the PMU-based SE and the traditional SCADA-based SE during the fault On August 19, 2018.
- At the moment of disturbances/faults, the PMU-based SE quickly and accurately captures the dynamic process that the traditional <u>SE cannot track</u>.

Power system oscillation analysis and control2. Dynamic load parameter identification3. Online linear state estimation

4. Further Work

4. Further Work

Thanks for your attentions!

