Wind generation and their grid connection

J.B. Ekanayake FIET, SMIEEE, CEng

Cardiff School of Engineering, UK

University of Peradeniya Sri Lanka

Changes expected in with smart grid?

Mainly driven by decarbonisation and modernization

- •Centralised generation \rightarrow Distributed generation
- •Conventional \rightarrow Renewables
- •Manual operations \rightarrow Automation
- •Call centres \rightarrow Automatic actions
- •Passive distribution networks \rightarrow Active DN
- •Customers \rightarrow Procumers
- •AC networks \rightarrow DC networks

International Symposium on Smart Grid methods, tools and technologies Shandong University, Jinan, China

3

Role of PE in Smart Grid

Content

- Wind turbine basics
- Wind turbine generators
- Wind integration

Power available in a wind stream

- The kinetic energy in a flow of air $=\frac{1}{2}U_1^2$ per unit mass
- Mass flow rate= $\rho A U_1$ (kg/s) - ρ is the air density in kg/m³

• Power available in the wind stream = $\frac{1}{2}\rho A U_1^3$

Energy- extracted by the wind turbine

Power extracted by the aerodynamic rotor

 $= C_{\rho} x$ Power available

- C_p is the coefficient of performance
- C_p (max) is 59% The Betz limit
- C_p depends on the tip speed ratio

$$\lambda = \frac{\omega R}{V} = \frac{\text{Velocity at rotor tip}}{\text{Wind velocity}}$$

Shandong University, Jinan, China

Power extraction

$$P = \frac{1}{2} C_p(\lambda, \beta) \times \rho A U^3$$

- P depends on
 - a) Wind speed
 - b) Rotor diameter
 - c) λ which is proportional to ω/U (for a given diameter)
 - d) β the pitch angle

Evolution of Wind Turbines

Fixed speed wind turbine

Variable speed operation

Power output

Forces on wind turbines

Variable speed wind generators

- □ Wind speed 7 to 12 m/s

Electronic control

Input aerodynamic power is reduced by increasing the pitch angle at high wind speed

Variable speed wind turbines

Doubly fed induction generator (DFIG)

Ekanayake, J.B, Holdsworth, L, XueGuang Wu, Jenkins, N, "Dynamic modeling of Doubly Fed Induction Generator wind turbines", IEEE Transactions on Power Systems, Volume 18, No 2, May 2003, p 803 -809.

CITATIONS – More than 500

Control of DFIG wind turbines

Voltage control in d-axis

Pitch controller

Maintaining the turbine operation point on the maximum power curve is by means of controlling the generator torque

Generator terminal voltage is controlled by manipulating the reactive power supply from the generator

Orientation of the turbine blades are Physically moved to control the aerodynamic torque.

Fully rated converter (FRC) wind turbines

- DC-link totally decouple the generator from the grid
 - Grid frequency is decoupled, wind turbine can operate at any rotor speed
 - Grid voltage is decoupled, change in grid voltage does not affect the generator dynamics
- Gearbox can be avoided if a multi-pole synchronous generator is used, e.g. Enercon turbines with 64 poles

Control of FRC wind turbines

Wind farms connections: offshore

Offshore wind farm – ac connection

Reasons for choosing HVDC transmission offshore

HVDC technologies

European Supergrid

Offshore nodes or hubs Aggregate offshore renewable generation

Allow cheaper interconnection between countries

Multi-terminal HVDC

Development of a MT-HVDC Hub

3

Shanuung University, Jinan, Unina

Development of an AC-Hub

LFAC – Low Frequency AC

Break even point

COST X DISTANCE

Summary

 Power electronics will play a key role in the Smart Grid mainly as an interface between the renewable energy sources and the grid

 Multi-terminal HVDC connections are emerging which has potential to connect cross countries and renewables

