The 3^{td} International Symposium on Smart Grid — Mehtods,Tools,and Technologies

> Jinan,Shandong,CHINA Sep. 16-19,2019

Wind Technology for Enhancing Power System Flexibility toward Energy Transition

17 September, 2019. Prof. Yong Cheol Kang, Yonsei University, Korea

CONTENTS

2. Power system operation

2015 Energy balance flow in Korea

- Average import for energy (5 yrs): 144 B\$ GDP: \$82/day/capita
- Average import for electricity (5 yrs): 47 B\$
- Import of energy: **\$8**/day/capita

What does 3020 RE plan mean to Korea?

Saves 10 B\$/year (energy import) & 1.3 B\$/year (CO₂ emission)

(**Ref.**) 2016 Energy statistics in Korea, 2017.

Statistics of peak and VRE generation

۲

in 2015

Rank	Country	Peak (GW)	RE (GW)	VRE (GW)	Wind (GW)	Total Gen (TWh)	RE Gen (TWh)	VRE Gen (TWh)	Wind Gen (TWh)	RE/ Total (%)	VRE/ Total (%)
1	*)	830	520 (1)	188(1)	145 (1)	5,811 (1)	1403 (1)	224(2)	185 (2)	24.14 (15)	3.90 (14)
2		723	219 (2)	98 (2)	73 (2)	4,303 (2)	571 (2)	232(1)	193 (1)	13.27 (23)	<mark>5.40</mark> (11)
3	٠	159	90 (5)	36 (4)	3 (13)	1,036 (5)	161 (7)	36 (8)	5 (16)	15.54 (19)	3.50 (17)
4		155	52 (9)	1 (24)	1 (32)	1063 (4)	171 (6)	0 (32)	0 (32)	16.09 (17)	0.00 (32)
5	۲	148	82 (6)	30 (5)	25 (4)	1,305 (3)	193 (5)	48 (5)	41 (5)	14.79 (21)	3.70 (16)
6		85	114 (3)	9 (10)	9 (9)	580 (7)	433 (3)	22(10)	22 (7)	74.66 (3)	3.70 (15)
7		83	105 (4)	85 (3)	45 (3)	647 (6)	196 (4)	126(3)	88 (3)	30.29 (11)	19.50 (5)
8		83	44 (10)	17 (9)	10 (7)	569 (8)	89 (10)	28 (9)	20 (8)	15.64 (18)	4.80 (13)
9		77	13 (13)	4 (15)	<mark>1</mark> (17)	522 (9)	<mark>16</mark> (21)	5 (17)	2 (20)	3.07 (29)	1.00 (22)
10		59	55 (7)	28 (6)	9 (8)	282 (12)	109 (8)	40 (7)	15 (9)	38.65 (9)	14.20 (7)
World Total			1,985	643	431	24,098	5,559	1,094	841	23.1	4.5

(Ref.) World energy council, "World energy perspectives: Renewables integrations," 2016.

Key Indicators on Energy Transition

Table 1. Key indicators relevant to the energy transition in selected countries (REmap Case)

Energy Transition → Energy Transformation

(Ref.) IRENA, "Global energy transformation: A roadmap to 2050" 2018.

Phases of VRE penetration

Phase I	 VRE is not relevant at the all-system level. 					
Phase II	• VRE becomes noticeable → VRE forecast is relevant.					
Phase III	• Power system flexibility becomes a priority.					
Phase IV	• Power system stability becomes relevant.					
Korea: Phase I (2015) → Phase III (2030)						

(Ref.) IEA, "Getting wind and sun onto the grid: A manual for policy makers," 2017.

CONTENTS

1. Energy Transition toward Energy Transformation

2. Power system operation

3.

MPPT operation of a variable-speed WTG

4. Frequency regulation of a variable-speed WTG

Operation of a power grid

Frequency is the heartbeat of a power system!!!

- Normal operation (Load variation): $\Delta f \leq 36 \text{ mHz}$
- Contingency operation (Loss of generation):
 - $\Delta f > 36$ mHz: Governor activation
 - $\Delta f > 200 \text{ mHz: AGC deactivation}$
 - $\Delta f > 1000$ mHz: Under-frequency load-shedding relay activation

(**Ref.**) LBNL report, "Use of Frequency Response Metrics to Assess the Planning and Operating Requirements for Reliable Integration of Variable Renewable Generation," Lawrence Berkley National Laboratory, LBNL-4142E, Dec. **2010**.

Operating reserves in a power grid (Uncertainty)

Fast-acting reserve = Primary reserve (1000 MW) + Regulating reserve (500 MW)

As penetrations of VRE increase, which kind of reserve is required more?

(**Ref.**) E. Ela, M. Miligan, and B. Kirby, "Operating reserves and variable generation," NREL/TP-5500-51978. National Renewable Energy Laboratory. Aug. **2011**.

Normal operation

- Day-ahead Hourly Unit Commitment
- Economic dispatch: Sub-hourly trend in loads, every 5 mins (Variability)
 AGC: Moment-to-moment fluctuations in loads, every 4 s (zero-energy service) (Uncertainty)

(Ref.) B. J. Kirby, "The Value of Flexible Generation,", PowerGen 2013.

Hourly scheduling vs 5 min scheduling

(**Ref.**) E. Ela, M. Miligan, and B. Kirby, "Operating reserves and variable generation," NREL/TP-5500-51978. National Renewable Energy Laboratory. Aug. **2011.**

Hourly regulation vs 5 min regulation Hourly regulation vs 5 min regulation

(**Ref.**) E. Ela, M. Miligan, and B. Kirby, "Operating reserves and variable generation," NREL/TP-5500-51978. National Renewable Energy Laboratory. Aug. **2011**.

• A SG controls P_m by opening/closing a valve

A SG controls not P_e but P_m by using reserves!

1. Small increase in load \rightarrow Frequency decline

2. Increase in P_m based on AGC (I controller) \rightarrow Restores frequency to ω_0

Only regulating reserve is deployed!

1. Small increase in load \rightarrow Frequency decline

2. Increase in P_m based on AGC (I controller) \rightarrow Restores frequency to ω_0

Only regulating reserve is deployed!

1. Energy Transition toward Energy Transformation

Power system operation

2.

3. MPPT operation of a variable-speed WTG

4. Frequency regulation of a variable-speed WTG

General of a wind turbine generator

Energy conversion system!!

Features of Pm with wind speeds

 $P_m(V, \lambda, \beta)$

Rotor speed (p.u.) P_m depends on the rotor speed (Concave) \rightarrow It has the global max. P_m

The optimum rotor speed depends on the wind speed \rightarrow Requires a 18 wider rotor speed range

MPPT control of a variable-speed WTG

Doubly-fed induction generator (DFIG)

Fully-rated converter (FRC) WTG

- MPPT (Maximum power point tracking) control
 - $P_e = k\omega^3$
 - Responds to rotor speed variation instead of frequency deviation

(**Ref.**) B. Shen, B. Mwinyiwiwa, Y. Zhang, and B. Ooi, "Sensorless maximum power point tracking of wind by DFIG using rotor position phase lock loop," *IEEE Trans. Power Electron.*, vol. 24, no. 4, pp. 942–951, Mar. 2009.

Operating region of a DFIG

Rotor speed (p.u.)

- Operating range of the rotor speed: 42 Hz–75 Hz (55%)
- Releasable energy and absorbable energy depends on the wind speed.
- A variable WTG inherently incorporates an ESS!!

20

CONTENTS

1. Energy Transition toward Energy Transformation

Power system operation

2.

3.

MPPT operation of a variable-speed WTG

4. **Frequency regulation** of a variable-speed WTG

Net Load with VRE penetrations

22

Steeper ramps: quicker ramp rates of dispatchable generation Lower minimum: lower minimum output of dispatchable generators More frequent up and down: increased uncertainty in load variation. For high penetrations of VRE, how can we secure the power grid flexibility?

Integration options for flexibility

Type of Intervention

Grid code, 2) Market design, 3) RE forecasting, 4) Sub-hourly UC/ED, FR of WTGs, 6) DR/EVs

(**Ref.**) J. Cochran, P. Denholm, B. Speer, and M. Miller, "Grid integration and the carrying capacity of the US grid to incorporate variable renewable energy," NREL/TP-6A20-62607. National Renewable Energy Laboratory. Apri. **2015**.

Frequency fluctuation caused by VRE VINIVERSIT

- Weather variation → Output power fluctuation of VRE → Frequency fluctuation
- High penetration → Severe output power fluctuation of VRE → Severe frequency fluctuation (MPPT control)

Frequency regulation of a WTG

- $\Delta f > 0$ (Over-frequency)
 - Reduces output power of a WTG
 - Frequency decreases
 - KE is absorbed into the rotating masses, thereby increasing the rotor speed

• $\Delta f < 0$ (Under-frequency)

- Increases output power of a WTG
 - Frequency increases
 - KE is released from the rotating masses, thereby decreasing the rotor speed
- Overdeceleration of a WTG should be avoided for stable operation of a WTG

Not Converter but MPPT increases frequency fluctuation!

FR of a WTG can mitigate frequency fluctuation!

FR of a WTG: - Fluctuation in wind speed \rightarrow Smoothing P_e

Stores energy into the rotating massesFrequency fluctuation mitigation

FR of a WTG: Same function as ESSs but NO ADDITIONAL COST!!

Frequency regulation for 60% penetration

29

