

Application of IEC61850 in smart grid visualization, simulation and diagnosis

GRIENT Automation, Informatization and smart application

GRIENT Scope of IEC61850

NIST Smart Grid Framework

GRIENT Smart Grid Investment in China

Source: http://www.chyxx.com/industry/201602/385830.html

GRIENT IEC61850 Core

GRIENT Information Model

Substation Configuration Language

Header	Version, Revision, History
Substation	Substation description including primary equipment and their connections, the automation and control target. It also associates the primary equipment to logical functions
Communication	Defines IED's access points and their subnets
IED	Contains IEC configuration information including information model and information exchange
Data Type Template	Defines format of logical devices, logical nodes and data objects

SCL – Object modeling

SCL files and engineering process

IEC61850 based substations

Legacy IED

IEC61850 IED

Visualization, simulation and analysis

Technical challenges

Configuration parsing

• Typical configuration file for substation can be larger than 100MB

Visualization

• Connectors and terminals become data packets in optical fiber network

Big real-time data

- Data processing
- Data storage and indexing

Days	Bays	Capacity	Note
1	1	88.473GB	256B*80*50*24*60*60=88.473GB
1	30	2.654TB	88.473*30=2.654TB
7	30	18.578TB	88.473*30*7=18.578TB

For sampled value data(>95% substation data), Assume a 9-2LE packet size is 256 Bytes, 80 sampled value per cycle.

Configuration parsing VTD-XML

 Load XML bytes into memory

GRI

- Record element details using Virtual Token Descriptor (VTDs)
- Navigate the XML using VTDs

Configuration parsing

GRI

GRIENT Visualization

GRI

Visualization

R PIT	● P101
Inputs	●数据集
保护1三跳出口[SPCSO1.stVal]	<mark>{SPCSO1.st∀al]</mark>
测控三跳[SPCSO48.stVal]	
测控合闸[SPCSO49.stVal]	● P102
隔刀1闭锁[SPCSO5.stVal]	● 数据集
et dsG00SE1	[OpCls.general]
+ dsG00SE2	[OpOpn.general]
	[EnaOp.stVal]

Real-time big data processing

Technical innovations

Multi-core utilization and kernel optimization for fast data exchange Distributed processing infrastructure based on high speed asynchronous data exchange bus

Efficient data storage and mining engine based on electrical model

GRIENT Application – integrated smart substation simulation and analysis

GRI

Integrated smart substation simulation

GRIENT Application – Portable smart substation testing tools

Smart substation analysis interface

GRIENT Future direction – Big Data based integration platform

- Relay information system
- Condition monitoring
- Packet recording and analysis
- Operation management system

