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Phasor Measurement Unit - PMU
 In 1893, Charles Proteus Steinmetz introduced a 

simplified mathematical description of the 
waveforms of alternating current - a phasor. 

 Phasor measurement unit (PMU) was invented 
and early prototypes built in 1988 by Arun Phadke
and James Thorp at Virginia Tech. 

 Macrodyne company built the first PMU in 1992. 

Source: Macrodyne



Wide Area Measurement System - WAMS
 A phasor network consists of PMUs dispersed 

throughout the electricity system, Data 
Concentrators (DC) and a Supervisory Control And 
Data Acquisition (SCADA) system at the central 
control facility. Such a network is used in Wide Area 
Measurement Systems (WAMS)

 Тhe first WAMS started in 2000 by the Bonneville 
Power Administration.

 Real-time phasor measurements are synchronized to 
an absolute time reference provided by the Global 
Positioning System (GPS) at the accuracy of 1 µs. 
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Application of WAMS in Power Systems
 Generation applications: generator operation status monitoring and transient angle stability

 Transmission applications: Load flow (LF), Optimal Power Flow (OPF), Wide-Area Dynamic 
Monitoring and Analysis, Synchronized Disturbance Record and Replay, Online Low-Frequency 
Oscillation Analysis, Power Angle Stability Prediction and Alarming, PMU based State 
Estimation (SE), OHL fault location and fault nature identification

 Substation automation: service restoration via bus sectioning, bus voltage control, substation 
parallel transformer circulating current control, line drop compensation, and automatic 
reclosing

 Distribution Automation: monitor, coordinate, and operate distribution components and 
equipment from remote locations in real time. 

 Feeder automation: line reclosure, load break switches, sectioning, capacitor banks

 Consumer side automation: Advanced Metering Infrastructure (AMI) and Automatic Meter 
Reading (AMR), Demand Side Response (DSR)



Electric faults on Overhead Lines (OHL)
 Fault nature:
⁻ TRANSIENT FAULTS 90% (system over-voltages, 

lightening, growing trees and plants, etc.) 

- PERMANENT FAULTS 10% (wire failure due to 
ice, snow, wind, birds, fallen trees, etc. or tower 
failure due to snowstorm, excessive wind, 
landslide, etc.) 

Source: Relectic.com 

Source: Cleantechagency.com 

Fault type Occurrence

Phase-to-Ground 85 %

Phase-to-Phase 8 %

Double Phase-to-Ground 5 %

Three Phase short circuit ∼ 2 %

 Fault type:



Fault location and nature identification
 Why is fault nature identification important?

- Transient: arcing fault (try auto-reclose)
- Permanent: arcless fault (metal, bolted faults, block auto-reclose)

 Why is precise fault distance important?

- In case of a permanent fault, the powerline restoration team should be sent to the very place 
of the fault, especially in severe weather conditions, so to minimise the time needed for line 
restoration



Research on Fault Location Algorithms (FLA)

Various algorithm approaches:
- Time domain
- Frequency (spectral) domain
- Voltage and current measurements
- Current measurements only
- Voltage measurements only
- Parameter settings-free
- One-port approach
- Two-port approach



One-port vs. Two-port Fault Location Approach
 One-port fault location approach  Two-port fault location approach
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One-port vs. Two-port FLA: accuracy does matter
 OHL 400 kV, 100 km long

 Single-phase to ground arcing fault simulated at
90 km from the left-hand side

 Measurements taken at the left-hand side for
one-port FLA

Measurements

90 km 10 km



Two-port Fault Location Algorithm
 Measured values: currents and voltages at both line terminals (using WAMS data)
 Single Phase-Ground fault
 Estimated unknown parameters: 

- distance to fault location (l)

- arc voltage magnitude (ua)

- fault resistance or tower 

footing resistance (RF)
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Model of the Electric Arc in Still Air
 Simple Arc model (simplest: rectangular wave)  Advanced Arc model
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Model of the Long Arc in Still Air – elongation effect

Simulated Arc voltage with increasing length






Two-port Fault Location Algorithm 
 Mathematical description of the phenomenon is relatively complex
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Two-port Fault Location Algorithm: Non-linearity 
 Challenge: Non-linearity of the equations:

𝑢𝑢𝐴𝐴 = 𝑐𝑐1 � 𝑙𝑙 + 𝑐𝑐2 � 𝑅𝑅𝐹𝐹 + 𝑐𝑐3 � 𝑙𝑙2 + 𝑐𝑐4 � 𝑅𝑅𝐹𝐹 � 𝑙𝑙 + 𝑈𝑈𝑎𝑎 sign 𝑐𝑐2 + 𝑐𝑐4 � 𝑙𝑙

- Non-linearity caused by capacitance of the OHL

- Engineer’s approach:    𝑐𝑐2 ≫ 𝑐𝑐4 � 𝑙𝑙 𝑢𝑢𝐴𝐴= 𝑐𝑐1 � 𝑙𝑙 + 𝑐𝑐2 � 𝑅𝑅𝐹𝐹 + 𝑐𝑐3 � 𝑙𝑙2 + 𝑈𝑈𝑎𝑎 sign 𝑐𝑐2



Two-port Fault Location Algorithm: Derivatives 



Challenge: Second-order derivative of measured voltage with respect to time:
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Two-port Fault Location Algorithm: Data Window

Time tags
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 Sampling frequency fs

 Moving Data window technique:



Newton-Raphson iterative method

uA = f(x0) + JΔx + µ
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Two-port FLA: Simulation

Parameters
Networks

A B
ULL,RMS [kV] 416 400
ϕ1 [ 0 ] 0 -20
R [Ω] 1.0185892 0.6366183
L [H] 0.0509295 0.0318309
R0 [Ω] 2.0371785 1.2732366
L0 [H] 0.1018589 0.0636618

Parameter p- and n-sequence 0-sequence

Resistance [Ω/km] 0.02021 0.1024

Inductance [mH/km] 1.07 3.82737

Capacitance [nF/km] 10.938 7.815

TRANSPOSED LINE PARAMETERS, 400 KV, 500 KM

PARAMETERS OF NETWORKS A AND B
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Estimated fault distance
 Estimated fault distance for arcing faults 

(uA=5 kV    RF = 15 Ohm)
 Estimated fault distance for arcless faults 

(uA=0 kV     RF = 15 Ohm)



Estimated arc voltage
Estimated arc voltage magnitude with elongating arc: 
- starting arc voltage 5 kV, 
- elongation rate 40 m/s
- (L=150 km, RF=15 Ω)

Estimated arc voltage for arcless fault: 
(L=150 km, RF=15 Ω, uA=0 kV)



Estimated tower footing resistance
 Estimated tower footing resistance for 

arcing faults  (L=150 km, uA= 5 kV) 
 Estimated tower footing resistance for 

arcless faults (L=150 km, uA= 0 kV) 



 Arc voltage waveform and estimated arc voltage magnitude by RLC and 
RL algorithms for the arcing fault at 150 km from the LHS terminal.

Estimated arc voltage (RLC vs. RL)



 Time-domain, adaptive parameter estimation, numerical algorithm for the 
analysis of L-G faults on long OHL. 

 The algorithm utilizes synchronized measurement technology. 

 Realistic electric Arc model used in simulations

 Fault distance, arc voltage and footing resistance successfully estimated for in 
broad range

 Excellent dynamic-tracking algorithm capabilities in fast-changing conditions

 The algorithm has proved to be robust and accurate enough with a high speed 
convergence 

Conclusions
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