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Phasor Measurement Unit - PMU

In 1893, Charles Proteus Steinmetz introduced a
simplified mathematical description of the
waveforms of alternating current - a phasor.

Phasor measurement unit (PMU) was invented
and early prototypes built in 1988 by Arun Phadke
and James Thorp at Virginia Tech.

Macrodyne company built the first PMU in 1992.

Source: Macrodyne



A phasor network consists of PMUs dispersed
throughout the electricity system, Data
Concentrators (DC) and a Supervisory Control And
Data Acquisition (SCADA) system at the central
control facility. Such a network is used in Wide Area
Measurement Systems (WAMS)

The first WAMS started in 2000 by the Bonneville
Power Administration.

Real-time phasor measurements are synchronized to
an absolute time reference provided by the Global
Positioning System (GPS) at the accuracy of 1 ps.

Rea Time Monitoring  pata Archiving
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Application of WAMS in Power Systems

Generation applications: generator operation status monitoring and transient angle stability

Transmission applications: Load flow (LF), Optimal Power Flow (OPF), Wide-Area Dynamic
Monitoring and Analysis, Synchronized Disturbance Record and Replay, Online Low-Frequency
Oscillation Analysis, Power Angle Stability Prediction and Alarming, PMU based State
Estimation (SE), OHL fault location and fault nature identification

Substation automation: service restoration via bus sectioning, bus voltage control, substation
parallel transformer circulating current control, line drop compensation, and automatic
reclosing

Distribution Automation: monitor, coordinate, and operate distribution components and
equipment from remote locations in real time.

Feeder automation: line reclosure, load break switches, sectioning, capacitor banks

Consumer side automation: Advanced Metering Infrastructure (AMI) and Automatic Meter
Reading (AMR), Demand Side Response (DSR)



Electric faults on Overhead Lines (OHL)

Fault nature:

TRANSIENT FAULTS 90% (system over-voltages,
lightening, growing trees and plants, etc.)

PERMANENT FAULTS 10% (wire failure due to
ice, snow, wind, birds, fallen trees, etc. or tower
failure due to snowstorm, excessive wind,
landslide, etc.)

Fault type:
Fault type Occurrence
Phase-to-Ground 85 %
Phase-to-Phase 8 %
Double Phase-to-Ground 5 %

Three Phase short circuit ~2%




Fault location and nature identification

Why is fault nature identification important?

Transient: arcing fault (try auto-reclose)
Permanent: arcless fault (metal, bolted faults, block auto-reclose)

Why is precise fault distance important?

In case of a permanent fault, the powerline restoration team should be sent to the very place
of the fault, especially in severe weather conditions, so to minimise the time needed for line
restoration



Research on Fault Location Algorithms (FLA)

Various algorithm approaches:
- Time domain
- Frequency (spectral) domain
- Voltage and current measurements
- Current measurements only
- Voltage measurements only
- Parameter settings-free
- One-port approach
- Two-port approach
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One-port vs. Two-port Fault Location Approach

* One-port fault location approach * Two-port fault location approach
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Measurements are taken only at one side of the OHL =~ Measurements are taken at both sides of the OHL
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One-port vs. Two-port FLA: accuracy does matter

* OHL 400 kV, 100 km long 100+

* Single-phase to ground arcing fault simulated at =~ Two Port
9o km from the left-hand side == 0One Port
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* Measurements taken at the left-hand side for
one-port FLA
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Two-port Fault Location Algorithm

Measured values: currents and voltages at both line terminals (using WAMS data)
Single Phase-Ground fault
Estimated unknown parameters:

distance to fault location (I)

faulted span
arc voltage magnitude (u,) Han tas Has Up, Up, Up;
. A
fault resistance or tower — . —
lay LAz las g, 1p, Ip3

footing resistance (R
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Model of the Electric Arc in Still Air

Simple Arc model (simplest: rectangular wave) Advanced Arc model

ua [kV], ia [kA]

0.11 0.12 0.13
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Model of the Long Arc in Still Air — elongation effect
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Two-port Fault Location Algorithm

Mathematical description of the phenomenon is relatively complex
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Two-port Fault Location Algorithm: Non-linearity

* Challenge: Non-linearity of the equations: >
=a lte Rpt C3@+ C4H(Cz %D

- Non-linearity caused by capacitance of the OHL
- Engineer’sapproach: ¢, » ¢, -1 ) u,=c;l+cy;Rp+c3- 1%+ Uysign(c,)
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Two-port Fault Location Algorithm: Derivatives

Challenge: Second-order derivative of measured voltage with respect to time:

voltage samples
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Two-port Fault Location Algorithm: Data Window

» Sampling frequency f;

* Moving Data window technique:
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Newton-Raphson iterative method

of,
Linearisation: Uua(ty) = f(Xg, )+ 8_)(1‘ (x=x,) - AX+ u(ly) Vet bk
parameters:
ofy il
UAGN) = T (X0 tN) + | x=x,) "X+ (i) .
Key equations of the Newton-Raphson method: B RF 2
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Two-port FLA: Simulation
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PARAMETERS OF NETWORKS A AND B

Networks
Parameters
A B

Uy rus [KV] 416 400
o [°] 0 -20
R [Q] 1.0185802 0.6366183
L [H] 0.0509295 0.0318309
R, [Q] 2.0371785 1.2732366
L, [H] 0.1018589 0.0636618

TRANSPOSED LINE PARAMETERS, 400 KV, 500 KM

Parameter
Resistance [Q/km]

Inductance [mH/km]

Capacitance [nF/km]

p- and n-sequence
0.02021
1.07

10.938

o-sequence
0.1024
3.82737
7.815
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Estimated fault distance

* Estimated fault distance for arcing faults * Estimated fault distance for arcless faults
(uy=5 kV Ry =15 Ohm) (uy=0kV  Rp=15 Ohm)
— 450 — 450
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Estimated arc voltage

Estimated arc voltage magnitude with elongating arc:
- starting arc voltage 5 kV,

- elongation rate 40 m/s

- (L=150 km, R;=15 Q)

Estimated arc voltage for arcless fault:
(L=150 km, R;=15 Q, u,=0 kV)
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Estimated tower footing resistance

» Estimated tower footing resistance for » Estimated tower footing resistance for
arcing faults (L=150 km, u,= 5kV) arcless faults (L=150 km, u,= o kV)
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Estimated arc voltage (RLC vs. RL)

* Arc voltage waveform and estimated arc voltage magnitude by RLC and
RL algorithms for the arcing fault at 150 km from the LHS terminal.
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Conclusions

Time-domain, adaptive parameter estimation, numerical algorithm for the
analysis of L-G faults on long OHL.

The algorithm utilizes synchronized measurement technology.
Realistic electric Arc model used in simulations

Fault distance, arc voltage and footing resistance successfully estimated for in
broad range

Excellent dynamic-tracking algorithm capabilities in fast-changing conditions

The algorithm has proved to be robust and accurate enough with a high speed
convergence
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