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History of the use of Decision Trees in Power Systems 

The combination of Decision Trees and PMUs was introduced in the ‘90s in connection with the 
installation of PMUs in the WECC in1994. [3] 
At that point decision trees had been use in studying transient stability issues but had not been 
connected to the location of PMUs [5]. Decision trees generated by classification and regression trees 
(CART) have the useful ability to select the variables to be used in forming the tree from a longer list.  
CART is a type of data mining software developed for broad application and is even used by cancer 
researchers in attempting to find cancer markers in DNA sequences.  
In attempting to locate PMUs for a specific task in a large system CART proved to be invaluable.  
The technique has been applied to data obtained from simulation for inputs to real-time, discrete-event 
control [4], predicting cascading events[15], voltage security[7], transient stability[9-10], detection of 
islanding[11], processing post disturbance records[12], security assessment[8], and adaptive security 
dependability of relays[14].  
The availability of large amounts of real-time data has expanded the opportunities for these and other 
applications. OSIsoft is archiving WECC PMU data and has reported* a system for archiving 150,000 
records a second. 
 
*OSI T&D Users group meeting 2012 

 



Outline 

• History 
• Example: Locating PMUs for adaptive security dependability [14] 

– Dealing with data as complex numbers 

–  Higher dimensions: separating hyper planes 

• Overview of Machine Learning in Power Systems 
– Classification and Regression 

– Clustering 

– Anomaly Detection 

– Bagging decision trees 

– Random Forest 

– Boosted Trees 

– Ensemble Trees BART 

 

MapReduce 
Open source 
The Cloud 
 



Adaptive Security Dependability 

• The protection system was designed to protect equipment – system was overbuilt. The 

system would work with a line out. If equipment was damaged the customers was out of 

service - high cost. Multiple primary (3 on transmission lines) protection and layers of backup 

protection. Backup of a backup 

• A relay can do two things wrong – trip incorrectly or fail to trip. dependability is "the degree of 

certainty that a relay or relay system will operate correctly",. Security "relates to the degree of 

certainty that a relay or relay system will not operate incorrectly 

• The current system is dependable at the expense of security – trigger happy 

• Adaptive Protection 

• Adaptive protection is a protection philosophy which permits and seeks to make adjustments 
automatically in in various protection functions in order to make them more attuned to prevailing 
system conditions  

 

 

 



Voting Scheme 

• Adaptive Voting Scheme with three primary relays. 

 

• State of the System 

– Stressed Security = Vote 

– Safe  Dependability = Don’t Vote  

 

• We are NOT changing relay settings neither during, before or after a fault. 

• The choice of location for the measurements and the voting logic is obtained using 

data mining software. 

• We create the data base by running many simulations (15,000) CART Classification 

and Regression Trees 
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What terminal? 

What measurements? 

  

Determination of triggering logic  

Performance evaluation  

System State 
Assessment 

PMU data PMU data 

Critical System 
Locations 

Supervisory 
signals 

Adjustment of Dependability-
Security balance under stressed 
system conditions. 

Relay 1 

Relay 2 

Relay 3 

OR 

VOTE 

AND 

Supervisory 
signal 

See detail 
below 

 Adjusting balance of security-dependability 

JST 



Recursive Partitioning Algorithm 
goal separate xs and os 
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CART selects splitting variables and the logic of the tree. That is, CART selects PMU 
locations and the logic. 



Recursive Partitioning Algorithm first 
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CART selects splitting variables and the logic of the tree. That is, CART selects PMU 
locations and the logic. 

a < 1.2 done 



Recursive Partitioning Algorithm second 
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CART selects splitting variables and the logic of the tree. That is, CART selects PMU 
locations and the logic. 

a< 1.2 
b<.6 done 



Recursive Partitioning Algorithm third 
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CART selects splitting variables and the logic of the tree. That is, CART selects PMU 
locations and the logic. 



Decision Tree Diagram 
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PMU Placement: voting on the 3 
Midway-Vincent lines 

Three parallel 500 kV lines in 
path26 



Heavy Winter training data. 
 

• 4150 cases 133 measurements counting real and imag parts of 
currents. 43 voltage angles 40 complex current. Red vote Blue 
don’t vote  

• Heavy Summer  

• 11367 cases 113 measurements 

• Voltage angles and real and imaginary parts of currents  

• 15527 cases(rows) 246 possible measurements (columns) 



CART  

• CART data is in an array, rows are events and outcome 

• Columns are measurements. We use magnitude and angles for voltage and 

real and imaginary parts of currents. CART picks measurements to use for 

splitting. 

• One column at a time the way we are doing it. 

• If it picks the column it gets a real or imaginary part of the current to branch 

on. Creates a problem when you have to change the reference 



PMU Placement: voting on 
the 3 Midway-Vincent lines 

Line Current 
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Less than 1% error rate in 15,000 cases half of which would 
have caused serious problems without voting. Two kinds of 
error: 1) fail to vote when you should have 
2) Vote when you should not have. 1) is what we now do 



0 500 1000 1500 2000 2500
-30

-20

-10

0

10

20

30

Measurements

Ir
, 

Ii,
 A

What is CART doing? 

16 

.   1 

.   0 

Split 

Splitter: 
Real Current 
Tesla – Los Banos 

JST 
JST 

All the data  
red vote  
Blue don’t vote 



Node 1 Split: 

• Predictor: Ir, Tesla – Los Banos 
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More about CART and the application 

• Then PG&E said they did not want to waste a PMU at the reference bus Pittsburg. They wanted 
to make the reference bus a 500 kV bus. 

• Could not find a 500 kV reference with the same 1% performance. Had to use different 
references in summer and winter 

• I gave a couple of talks at Statistical and Applied Mathematical Sciences Institute (SAMSI) NSF, 
Duke, NCSU, UNC Consortium. They use CART to look for DNA cancer markers.  My 15,000 ~ their 
1,000,000 



Real data 
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Cart. 
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But this is what you are more likely to get 



Solution 

• Form the perpendicular bisector of the line joining the 
centroids.  

• The centroid of the blue points is the average of the x point 
and the average of the y points taken over all 4150 points. 

• Same for red points. 

• Consider line joining the centroids. Bisect it and form a 
perpendicular 



beta=-0.4068, 
gamma=4.2446 
x+beta*y=gamma 

NE1=0, NE2=22 
0.53% error 

min(d1(1:1636))=2.1e-004 
max(d1(1637:4150))=0.03 

Heavy Winter line 1106 complex current per unit 
Blue - don’t vote (1) 1636 points 
Red - vote (0) 2514 points 

x 

y 



Centroids in green 
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More dimensions 

• A single PMU measures at least one voltage and one current (usually more). The minimum 

amount of data is 3 – a voltage angle and real and imag current. Could go up to 10 or 12. 

• Trajectories in impedance. Even six point gives 12 numbers. 

• Now need an idea from R. A. Fisher: Fisher’s Linear Discriminant Analysis (1936)[1] [2] 

• Normalize the data with the experimental covariance matrix. 

• That turns ellipsoids into spheres. Now the perpendicular bisector of the line joining the 

centriods is optimum 



Classification Trees for Complex Data 

• Traditional Decision Tree algorithms handle 1-D data making 

decisions based on a single attribute 

•  What we need: 

– Use the real as well as the imaginary components to make decisions 

– Extend the concept to make multi-class distinctions 

• What we do: 

– Use Fisher’s Linear Discriminant (FLD) to split complex data [1, 2] 

27 



Illustration of the Method 
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Σy=b, 𝝁𝒃 

Σy=r, 𝝁𝒓 

𝒘: 𝒂𝒙 + 𝒃𝒚 + 𝒄 = 𝟎 



Mathematics Involved 

• Equation of the separating hyper-plane is given by: 

( + ) 
𝑦=𝑟𝑦=𝑏

−1

𝜇𝑏 − 𝜇𝑟
𝑇 𝑥 − 𝑤 = 0 −−−−−−−−−−−−−−−− 6  

• Distance of the 𝑖𝑡ℎ point from the hyper-plane: 

𝐷 𝑖 =
𝑎𝑥𝑖 + 𝑏𝑦𝑖 + 𝑐

𝑎2 + 𝑏2
 −−−−−−−−−−−−−−−−−−−−−−−−−−−−− 7  

• New splitting variable, D: 

𝐷 𝑖 ≤ 0: 𝑅𝑒𝑑 𝐷𝑜𝑡𝑠       
𝐷 𝑖 > 0: 𝐵𝑙𝑢𝑒 𝐶𝑖𝑟𝑐𝑙𝑒𝑠

−−−−−−−−−−−−−−−−−−−−−−−−−−−− 8  
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Extending to Higher Dimensions and 
Multi-Class Distinctions 

30 

Number of Hyper-planes required =  
𝒏× 𝒏−𝟏

𝟐
 

1 
2 

3 

4 

Separating hyper planes 

4 classes of 
complex data 6 
hyper planes, 
Splitting criteria 
distance to the 
hyper plane 



Logic developed for handling high 
dimensional data 
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𝐶1 

𝐶2 

𝐶𝑚𝑖𝑑  

𝑥  

𝑤 

𝑚 = 𝐶1 − 𝐶2 

Any vector perpendicular to 𝑚 is given by, 

1

2
𝐶1 − 𝐶2 + 𝑤 𝛼  

In order to find the optimum hyper-plane, we 

have to minimize: 𝑥 − 𝐶𝑚𝑖𝑑 − 𝑤 𝛼 2 

On solving, we get: 

𝜶 = 𝒘 𝑻 𝒘 
−𝟏
𝒘 𝑻 𝒙 − 𝑪𝒎𝒊𝒅  −−−−−−−−−−−−−−−−−−− 9  

Substituting this value of 𝛼, we get the splitting variable in high dimensions as: 

𝒅 = 𝑰 − 𝒘 𝒘 𝑻 𝒘 
−𝟏
𝒘 𝑻 𝒙 − 𝑪𝒎𝒊𝒅  −−−−−−−−−−−−− 10  



Terminal 
Nodes: 

Voting Decision: 

Plurality Rule 
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Machine Learning in Power Systems: PMUs and Big Data 

 
Used to construct algorithms that learn from data and are using that to make predictions or 
decisions. The data in power systems has come from simulation in the past and is on the threshold 
of using large amounts of archived data PMU. Machine learning is closely related to and often 
overlaps with a number of fields of computer science  
• Computational Statistics 
• Artificial Intelligence, 
• Mathematical optimization 
• Optical character recognition 
• Data Mining 
• Pattern Recognition 
• Computer Vision 
Our department at Virginia Tech now has a Machine Learning course which has a large number of 
power students enrolled. 



 

 

Classification and Regression 
• Decision Trees CART 
• Ensembles (Bagging, Boosting, Random Forests) 
• Linear regression 
• Naïve Bayes 
• BART             Bayesian Regression Trees 
• Neural networks 
• Logistical regression 
• Perceptron 
• Support vector Machine  SVM 
Clustering 
• BIRCH 
• Hierarchical 
• k-means 
• EM 
• DBSCAN 
• Mean-shift 
Anomaly Detection 
• k-NN 

 

Bagging decision trees, an early ensemble method, builds 
multiple decision trees by repeatedly resampling training data 
with replacement, and voting the trees for a consensus 
prediction 
A Random Forest classifier uses a number of decision trees, in 
order to improve the classification rate. 
Boosted Trees can be used for regression-type and 
classification-type problems 
 



Hybrid Databases 

Clustering 

Other kinds of trees 

SVM –Vladimir Vapnick Franklin Medal for Machine Learning 

MapReduce 

Model Predictive control; Detrending Parallel 

Anomaly detection 

Base lining 

Nearness to trouble 

Regression 

Need for adaptive Trees 

The cloud 

Outline of the rest 



Hybrid Data Bases 

 
The fact that major disturbances are rare makes it necessary to study some aspects of power 
system behavior with computer simulation. Particularly if the model validation of the 
previous section is accomplished there are significant advantages to be gained by combining 
real PMU data with simulation results to find a hybrid database that is a candidate for data 
mining. In the recent past most decision trees have been found using only data from 
simulations.  

A slight variation is the work in [6] where simulations from a test system (10%) were merged with 
those of an actual operations planning model of the Hydro-Québec power grid (90%). While both 
are simulations they represent the issue of combining PMU data from different system models. 
The resulting database in [6] is skewed in the sense that vast majority of cases are stable. The 
solution in [6] is balanced by duplicating the unstable cases a number of times.  
An alternate is to select simulation cases that will produce a balanced database as in [14]. That is, 
although the event is rare in the real world a data base that includes many extreme or rare 
events (balanced between stable or unstable) is appropriate for creating decision trees. 

  



Clustering  

There is a more limited history of data mining of archived PMU data. Fifteen months of PMU data 
of 54 angle differences has also been subjected to statistical analysis to detect abnormal power 
system behavior using software developed for NASA by PNNL [16-18].  
 
Data is being mined to extract mode shapes, damping ratios, and frequencies facilitating 
establishing warnings/alarm thresholds for operator action. In addition all of the PMU 
measurements will be correlated with the system performance measures for normal operating 
conditions and its variations over a period of time and during various limiting conditions like 
thermal limits, proximity to voltage instability or voltage collapse, transient stability, etc.  
 
This kind of analysis will facilitate establishing warnings/alarms thresholds for voltage phase angle 
measurements and determine site pairs of interest that are important in revealing systems stress (a 
natural CART function) and will recommend upper and lower limits for normal operation. It is 
argued [23] that the investment in improving monitoring of the high voltage transmission network 
represents the most cost-effective category of smart grid investment. But it is equally true that 
acceptance of the new technology is vital. 



Other kinds of trees 

 
There are a number of alternate approaches to the creation of the decision tree. A 
number have been compared with a variety of criteria in [6].  

They range from neural nets,  
support vector machines,  
random forests,  
conventional decision trees  
CART 
Fuzzy decision trees, Fuzzy-IDT3 (Fuzzy Interactive Dichotomizer 3), and BART(Bayesian Additive 
Regression Trees) [22].  
Certain elements of the creation of the database and the user’s interaction with the tree are 
common however.  For the various application envisioned the following summarizes the 

strategy to be employed. 



SVM 
• A support vector machine is a classifier that divides its input space into two regions, separated by a linear 

boundary. Here, it has learned to distinguish black and white circles 

 Detection of an outaged line is achieved using the variations of 
phase angles measured at the system buses where PMUs are 
located. Hence, protection from unexpected overloading in the 
network that may lead to system collapse can be achieved. Such 
detections are based upon an artificial intelligence technique 
which is the support Vector Machine (SVM) classification tool. 
[36] 



MapReduce originally referred to the proprietary Google technology. It is now genericized and is part of 
Apache Hadoop an open source implementation. MapReduce  is a programming model for processing and 
generating large data sets with a parallel, distributed algorithm on a cluster.  
 
A MapReduce program is composed of a Map() procedure that performs filtering and sorting (such as sorting 
students by first name into queues, one queue for each name) and a Reduce() procedure that performs a 
summary operation (such as counting the number of students in each queue, yielding name frequencies). The 
"MapReduce System" (also called "infrastructure" or "framework") orchestrates the processing by marshalling 
the distributed servers, running the various tasks in parallel, managing all communications and data transfers 
between the various parts of the system, and providing for redundancy and fault tolerance. 
 
Fast algorithms capable of processing massive volumes of data are now required in the field of power 
systems. An example is a parallel detrended fluctuation analysis (PDFA) approach for fast event detection on 
massive volumes of PMU data, taking advantage of a cluster computing platform[37]. The PDFA algorithm is 
evaluated using data from installed PMUs on the transmission system of Great Britain from the aspects of 
speedup, scalability, and accuracy. 
 
 
'Detrend' In forecasting models, the process of removing the effects of accumulating data sets from a trend to 
show only the absolute changes in values and to allow potential cyclical patterns to be identified. This is done 
using regression and other statistical techniques. 
 



Anomaly Detection using MapReduce 

The high rate of data samples reported by devices that support PMU functionality forces the 
use of non-traditional methods in order to attempt realtime anomaly detection. Two methods 
discussed are offline machine learning and a realtime sliding window procedure. In using 
machine learning techniques it is possible to assert a classifier algorithm, which to a 
certain degree of accuracy can flag incoming data for further operation when applied in 
realtime. The open source project Hadoop provides the storage architecture for large 
datasets (petabyte scale) as well as the MapReduce computational framework for distributed 
computing to produce these classifiers.[38] 



Base Lining 

 NASPI’s Planning and Implementation Task Team (PITT) made base lining of phase 
angle differences their highest priority. There has not been sufficient data available to 
date but [17] presents results using State Estimator data sampled every few minutes. 
Part of [17] is to identify data as atypical [18] rather than typical. 

If the PMU measurements can be correlated with system performance measures for normal 
operating conditions and its variations over a period of time and during various limiting conditions 
like thermal limits, proximity to voltage instability or voltage collapse, transient stability, etc. then 

decision trees can be formed important angle pairs identified.  
The goal is to establish warnings/alarms thresholds for voltage phase angle 
measurements and determine site pairs of interest that are important in revealing 
systems stress (a natural CART function) and will recommend upper and lower limits 
for normal operation.   



“Nearness to trouble” 

The concept [17] of labeling different issues such as nearness to voltage instability 
or growing inter-area oscillations as both being either insecure or secure (I,S) can be 
used to classify each collection of data.  

By using the distance from separating hyper-planes between high dimensional collections of 
data (for example, a trajectory made up of complex voltage rather than a single measurement) 
as splitting variables in the trees [13] entire events can be labeled I or S and a tree constructed. 
Again simulation results from a validated system model will be used to make a database that is 
balanced. 
Note at this point the decision about which of the many techniques above to use is made. It 
may be that more field data may be used to connect the statistical concept of atypical behavior 
with power system concept of insecure. Are events that are insecure bordering on insecurity? 
Are there certain synchrophasor measurements that can serve as "bellwether" for identifying 
existing or imminent unit or system instabilities? 



Regression 

 
Estimation of line flow and voltages after an outage. 
  
An example of data mining in power system operations is described in [25] where 
an IDT3 tree is trained to predict the flows and bus voltages after outages in the 
Taiwan power system. There were no PMU measurements considered and all the 
cases were generated by simulation. The numerical values (P, Q, V) were quantized 
to 10 levels and the regression feature (the R in CART) was employed. The 
advantage was that in real time the tree could provide the new system state rapidly 
and accurately and contingency analysis was enhanced.   



PMUs and The Cloud 

There are obvious applications involving cloud computing envisioned [39-41], 
including the linear estimator [42]. The image of vast numbers of phasor 
measurements being delivered to the cloud and made available to the control 
center is certainly attractive. Attempts to place the open source linear estimator 
[43] in the cloud are currently underway . We are attempting to demonstrate the 
feasibility of running the open source linear estimator in the cloud.  



 
The need for Machine learning that keeps learning 

 A tree or other answer obtained from simulation or archived data will be dated by 
power system growth and change.  
Hydro Quebec has 60,000 cases that have been used for studies. It took 4 years to 
finish the adaptive –security-dependability project and install the implementation of 
the tree. It is likely no longer the best answer 
The Hybrid data base where the information grows is one obvious requirement 
We need to have a BART kind of response so that the tree evolves as the system 
changes. A Kalman Filter is inherently Bayesian –it continually adjusts the gain as data 
comes in. The CART tree has a structure that is determined by the algorithm and 
fixed. 
Bagging decision trees, Random Forest classifiers, Boosted Trees and BART may hold 
the answer. Trees are only software and are not fixed but inputs are harder to change. 
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