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Canada: 
10 provinces + 3 Territories 
Population: 35 Million 
 
Manitoba:  
Population 1.1  Million 
 
University of Manitoba:  
- Major Provincial University (29,000  students) 
- Oldest University in Western Canada (est. 1877) 
- Power Eng. Program : 6 Faculty+6 Adjunct  
Faculty, 35 M.Sc.+25 Ph.D. students 
-Simulation tools a major research area 
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PSCAD/EMTDC: Electromagnetic Simulation 
Platform 
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Real Time Simulator (RTDS Technologies, Winnipeg) 
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 The traditional and the Emerging Grid 

 Why  is Transient Simulation important in 
Todays Systems ? 

 What can be done with RT Simulation 

 How can very Large Systems be modelled? 

 How can Simulation help in design and 
Decision Making? 

 
 
 
 

Outline 
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 The Traditional Power  Grid versus 
the Emerging Power Grid 
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Traditional Power Network 

• 3-phase Ac Generators 
• Transmission Lines and 

Cables 
• Induction motors and other 

loads 
• Protection Equipment (non-

electronic) 
• Integrated and Regulated 
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More  deregulated  
Require  Advance Protection and Control 

Methods 
 Increasing inclusion of renewable energy 

sources (wind) 
Require More Precise control of Power Flow- a 

move towards the pipeline model through the 
use of Power Electronics 
HVDC and FACTS Controllers 

 Incorporation of Grid Intelligence at the 
Distribution Level - Smartgrids 

Evolution of the Energy Supply System 
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Traditional Power Network 

• Power Flow dictated 
by voltage profile 

• Pipeline: Flow is 
locally 
controllable V1 

V3 

V2 

V5 

V6 

V4 

Evolution of the Energy Supply System 

Emerging Power Network 
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Emerging  Power Networks  
Use of Power Electronics: HVDC Systems 

• Large Power Electronic Systems: Gigawatt range  
HVDC Transmission 
 
 
 
 
 
 
 

 

 

 dc Line
SE Ac System

D
c 

Fi
lte

r

A
c 

Fi
lte

r s
Zsys

RE Ac System

Zsys

Electrode line impedance

Completely decoupled. Any desired level of 
power flow can be established 
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DC Grid for Atlantic Wind Project  
(http://offshorewind.biz) 
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DC Grid Vision for Europe 
(http://offshorewind.biz) 
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Microgrid (Environmental Commissioner of Ontario :  
http://www.eco.on.ca/blog/tag/smart-grid/) 

Microgrids 
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 Simulation Tools 
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Simulation Tools Used in Power System Studies 

• Small Signal Analysis Tools  
– simplified model, eigenvalues show general behaviours 

• Transient Stabilty Analysis  
–  Only electric machines and slower controls are modelled 

using differential equations. Ac network is modelled using 
phasors 

– Can model very large networks to assess global stabilty 
• Electromagnetic Transients Simulation 

– Most detailed simulation.  Seeing increasing use as 
computers become faster   

– Can be slow if run on sequential machines 
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Electromagnetic Transients Simulations: 

10-7 10-5 10-3 10-1 101 103 105 

Lightning 

Switching 

Sub-synchronous resonance 

Transient stability 
Long term dynamics 

Tie-line regulation 

Daily load variation 

Timescale (seconds) 

HVDC, FACTS, etc. 

Generator control 

Protection 

Prime mover control 

Load Frequency Control 

Operator actions 

1 cycle 1 sec 1 min 1 hr 1 day 

Impulsive transients 

Oscillatory transients 

Short-duration variations 
Long-duration variations 

Imbalance, harmonics, inter-harmonics, notching, noise 

Voltage fluctuations 

Frequency 
variations 

EMT Simulation 

Equipment or 
System 
Function 

Type of Study 
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Typical Waveforms from EMT simulation 

 Graphs
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How does the future Grid 
Structure impact simulation 
technology? 
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How does the future Grid Structure impact 
simulation technology? 

New Components in the grid such as: 
• Wind Turbines  
•Solar Energy harvesters 
• Power Electronic Controllers 
• Voltage Sourced Converters (VSC) with new topologies 

- Multilevel Modular Converters 
• Smartgrids – distribution systems with close tie between 
the power grid and a communication overlay 
Models have to be developed for these components. 
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MMC Topolgy 

21 
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Example: MMC Converter- Testing the limits of 
conventional simulation technology 
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MMC Topolgy 

22 

Multi-level Modular Converter  Topology 
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Transbay Cable (San Francisco-Oakland) 

Courtesy: Siemens 
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Trans-Bay HVDC Project 

• Purpose:  
– Congestion Relief 
– Improvement of security of supply 
– Retirement of Generation in San Francisco Area 

• Customer Trans Bay Cable, LLC  
• Location Pittsburg, California, and San Francisco, 

California  
• Power Rating 400 MW  
• Voltage levels ± 200 kV DC,  

230 kV /138 kV, 60 Hz  
• Type of plant 85 km HVDC PLUS  

submarine cable  
• Type of Thyristor IGBT  
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Limitations & Objectives   

• Modelling the converter for EMT-based programs is very 
consuming of resources and computer time due to 
unprecedented component count 

N1 

N3 

N2 

Sub-module                      3 Nodes         

240 - Sub-modules                 720 Nodes  
(1 Phase Arm) 

 3 Phases                 2160 Nodes  

Uni-polar HVDC system               4320 Nodes  

Uni-polar HVDC system               2880 PE                   
                   switches  

• Can we speed this up?  
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Modeling the converter for EMT-based programs 
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27 

Results – Time Comparison 

# of Sub-
Modules 

Run Time (s) 
Ratio 
(%) PSCAD 

Converter 
Modelled 
Converter 

2 5 2 250 
6 11 2 550 

12 22 3 733 
24 72 4 1800 
48 335 7 4786 
72 1337 11 12155 
96 3447 19 18142 

120 9021 29 31107 

Total Simulation Time = 5 s 
Simulation Time Step = 20 μs 

Time taken for a single phase converter 

Modeling the MMC in EMT-based programs 
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How does the future Grid Structure impact 
simulation technology? 

• Increased Use of Real-time Simulation for 
testing and parameter selection 
•Increased use of Hybrid Simulation (e.g. 
TSA+EMT) 
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 Continuous hard real-time 
response must be achieved and 
sustained if physical control and 
protection equipment is to be 
included in the simulation study 

 The RTDS Simulator 
• A combination of specially 

designed parallel processing 
hardware and detailed, 
efficient solution algorithms 

Real Time Digital Simulation 
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How is RT Simulation Achieved? 
 -Exploitation of natural delays due to relativistic speed limits 

 -Matrix size related to sub-network size 

 -Subnetworks can be simulated in parallel) 
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Power Hardware in Loop Simulation (PHIL) 

 PHIL arrangement for an inverter testing at a testing facility 
(courtesy M. Steurer, CAPS/FSU) 
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Simulation Accuracy Improvement  in Power Hardware 
In Loop Simulation  

 PHIL interface can be unstable/inaccurate 
 Interface algorithms and hardware for  improving stability and 

accuracy of PHIL has to be developed 
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Hybrid Simulations: 

•It is often impractical to model the entire system in 
detail for analysis 

•The larger system is divided into an several 
subsystems which are simulated using different 
simulation tools   

•Where detail is important, components are 
represented in full  electromagnetic transient 
detail 

•Other subsystems can be reduced order models, 
e.g., transient stability models 
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• Very large Networks can be studied in reasonable time by 
combining EMTP and Transient type Programs 

• Can faults in TSA part be modelled to accurately affect transients 
in EMT part - yes!  

Development and Analysis of Applicability of a Hybrid 
Transient Simulation Platform Combining TSA and 

EMT Elements 
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PSCAD/
EMTDC

Data Exchange
Module

Pipe 1

Pipe 2

TSA Module EMT Module

Time Comparison

0
50

100
150
200
250
300
350
400
450
500

0 50 100 150 200
Number of Buses in the Systems

Tim
e 

Co
ns

um
pt

io
n 

(se
co

nd
) EMT(AC)

EMT+TSA+FDNE(AC)

EMT(AC+2DC Links)

EMT+TSA+FDNE(AC+2DC Links)

Electrical Distance

0

2

4

6

8

0 2 4 6 8
Port I

Po
rt

 II A



1st  International  Symposium  on  Smart  Grid  Methods,  Tools  and Technologies , Shandong University, Jinan, May 17-21, 2015 35 
 

• Hybrid Simultions can greatly be speeded up with multi-core/multi-
CPU computing platforms 

Development and Analysis of Applicability of a Hybrid 
Transient Simulation Platform Combining TSA and 

EMT Elements 
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Frequency Dependent Network Equivalent 
(FDNE) 

1. Develop the frequency domain response of the external 
system from detailed component values or measurement 

2. The FDNE is realized as a multi-port admittance matrix with 
rational function elements using vector fitting.   

3. The s-domain rational function admittance is directly 
included  in the EMT time-domain simulation (while ensuring 
passivity) 
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Modelling  a very large Network in Real-time 
 2292 bus Southern Alberta  Network   

• 802 loads, 137 generators, 142 shunts, 
1006 transmission lines and 1338 
transformers  

 simulated in real time on 2 RTDS racks (64 
processors) and connected to two HVDC 
infeeds modelled in full detail. 
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How does the future Grid Structure impact 
simulation technology? 

• Design of Grids requires repetitive simulations: 
 
- Traditionally, Approach:  Monte-Carlo simulation with 
random or sequential parameter variations (e.g. 
overvoltage studies) 
 
- Today’s planners demand more automation- inclusion 
of optimization tools and sensitivity analysis tools. 
These are commonly referred to as Decision Support 
Tools 
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Simulation Based Decision Support 
Tools, e.g.,: 
–  Simulation Based Optimization (OE-

EMT or optimization enabled EMT 
simulation) 

– Sensitivity Analysis using Simulation 
– Simulation for obtaining Surrogate 

Models 
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Optimization-Enabled Transient Simulation 

• A mathematical 
optimization algorithm 
strategically selects 
the trial points 

• Result- orders of 
magnitude less runs 
than with brute force 
approach 

The Optimization Tool 
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Select new 
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Optimization Performance) 
Table 1. Initial and Optimized Parameters 

 
 Initial Parameters Optimized Parameters 

Gain (rectifier) 1 1.04 
Time constant (rectifier) 0.3 0.007 

Gain (inverter) 1.44 0.3 
Time constant (inverter) 0.0083 0.033 

 

Run number

0 20 40 60 80 100 120

O
F

27

28

29

30
50

100

150

200
•OF reduced from 62.5 to 27.5 in  
108 runs. 

•With 10 steps in each of 4 
variables, traditional multiple-run 
techniques would require 
104=10,000 simulation runs. 

•2 Orders of Magnitude time 
savings! 
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Example: Optimization of Converter Gains in a Dc Grid 
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Fig.  4: Optimization Usingof the single converter relaxation method 

Optimum Gains must be selected for several 
converter controllers considering several 
operating scenarios 

VSC2 (Vdc, Vac) VSC1 (P, Vac) 
SCR Kp_Vdc Ti_Vdc Kp_Vac Ti_Vac OFs SCR OFs 

1.8 6.181 0.008 1.233 0.018 4.391 

2 

2.805 
2 23.83 0.007 0.952 0.049 4.054 2.809 
3 8.310 0.006 1.443 0.047 1.926 2.819 
4 9.416 0.013 0.273 0.009 1.899 2.818 
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Use of Decision Support Simulation  for Study of a Microgrid 

Stability and reliability of a Microgrid 
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Use of grid-computing to speed up Decision 
Support Simulations 
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The Model as a Specification 



1st  International  Symposium  on  Smart  Grid  Methods,  Tools  and Technologies , Shandong University, Jinan, May 17-21, 2015 48 
 

The Approach of Model Based 
Specification 

• Suppliers are provided with a model platform 
of the system into which the proposed 
equipment is to be installed 

•The specification is stated in terms of a desired 
performance requirement for the overall power 
network 

•This is an emerging trend in procurement of 
large Power Electronic Applications in Power 
Transmission Systems 
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Advantages of MBS 

• Manufacturers can experiment with different 
design alternatives on the platform provided  

• The model can be made available on 
established simulation platforms (e.g. 
PSCAD/EMTDC 

• For the utility, keeping the system model 
updated provides an excellent knowledge base 
and training tool for future engineers. 
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Waveform Relaxation Based Real-
time HIL Simulation (WR-HIL) 

PS: Power System 

RTPR: Real Time Player / Recorder 

Hardware (Real Time)Software (Non-Real Time) RTPR & communication

PS Devicex
y

PS
(EMT)

x RT 
Player

Digital 
Recorder D/A Amp.

Device
(HUT)

x

yA/DDigital 
playback

RT 
Recordery

At k=0 assume
yk(t)=[Y0 , …] ; t∊[0 T]

Taking yk(t) as a known waveform, 
simulate PS to obtain xk(t)      

Play xk(t) in real-time to HUT and 
obtain yk(t)      

Solution 
converged? Stop

Yes
k=k+1

No

WR-HIL

Block Diagram: Algorithm: 
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1 

WR-PHIL Example 

i=4 

WR-PHIL converged 
in 4 iterations 

 inrush current of an unloaded transformer 

             

RTPR Off-line 
PSCAD 

Real-Time HUT 
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Concluding Remarks 
•The emerging grid is creating new demands 
and challenges for simulation tools 

•Simulation tools are evolving: 

 Improved methods for Real-time and HIL 
Simulation 

 Innovative models for new components 

 Hybrid Simulations 

 Decision Support Layers 

 Introduction of new computing platforms 
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