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 WT(Wind Turbine)

 PV（photovoltaic）

 PET（Power Electronic 
Transformer）

 BESS（Battery Energy 
Storage System）

 EV(Electric Vehicles) 

 PEL（Load with power 
electronics interface）

1.1 Trend of Distribution Network 

Distribution network(DN) is including so many types of Power
Electronics devices, we should pay attention to protection issue



1.2 Challenges of Relay Protection for DN

Properties of DN Fault Characteristics Challenges of Relay 
Protection

Vulnerability of Converter Limited Current 
Amplitude Low Sensitivity

Low Inertia of Converter High Current Rate of 
Change

High Speed Fault Detection 
Requirements

Distributed Generation 
Integration

Bidirectional Fault 
Current Difficulty in Coordination

Topological variability / Difficulty in Coordination

How to solve these problems? Boundary protection?



1.3 Principle of Boundary Protection

One terminal protection, and zone is the whole length of the line
 Identify fault by information of special frequency band
Transient protection, with fast speed
No communication, no coordination between protections

Relay

Boudary Boudary



Wave trap of line, stray capacitance of bus, shunt reactor,
series capacitor in AC transmission system.

Smoothing reactor and DC filter in LCC-HVDC system.
Shunt capacitor in VSC-HVDC system.
Series reactor in DC grid.

1.4 Problems of Existing Boundary Protection 
Line Boundaries

ROCOV, ROCOC is easily affected by line topology and fault
conditions, such as fault resistance, type and distance.

Width selection of data-window lacks the theoretical basis.
Computational burden is heavy.

Protection Criteria

It is important to build a suitable Line-Boundary(LB) and a simple
criterion to protect DNs including more converters.
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2.1 Characteristics of MR

Magnetic Ring(MR) is widely applied to 
suppress VFTO in GIS, that is to say, it can 
damp the very fast transient signals, has a 
nice boundary characteristics. 

MR can be designed as open structure, and 
easy to install.

MR is cheap and has been widely used in 
engineering.

[1] S. Burow, et al. "New methods of damping very fast transient overvoltages in gas-
insulated switchgear," IEEE Transactions on Power Delivery, vol. 29, pp. 2332-2339, Oct. 
2014.
[2] J. He, et al. "Design optimization of ferrite rings for VFTO Mitigation," IEEE 
Transactions on Power Delivery, vol.32, pp.1181-1186, Jun. 2017．



2.1 Characteristics of MR

Frequency Dependent Impedance of MR
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where A=(r1-r2)×d
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and are the real and 
imaginary part of complex 
magnetic permeability

One Mn-Zn ferrite magnetic
ring with r1=25mm,
r2=15mm, d=20mm



2.1 Characteristics of MR

Frequency Dependent Impedance of MR
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G is the voltage-step
wave generator.

TWR(Transient waveform
recorder) is used to record
the current wave and its
sampling frequency is
100MHz.

The number of MRS is
changed from 0 to 8.

Test circuit



2.2 influence of MRs on voltage 
travelling wave

Fault analysis

(1) Internal fault f1:

x
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The difference in voltage calculation of internal and external faults
is mainly determined on the refraction coefficient kα
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2.2 influence of MRs on voltage 
travelling wave

Refraction of voltage travelling wave
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2.2 influence of MRs on voltage 
travelling wave

Difference in Voltage of Internal and External Faults
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time of voltage of travelling wave in
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3.1 Peak Time Based Fault Detection
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Calculation of peak time

Fault detection criterion
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The threshold has to be smaller than the 
minimum peak time of forward external fault 
and reverse external fault

Where krel is reliability coefficient, can be 
chosen as 0.8



3.1 Peak Time Based Fault Detection

Theoretical Calculation of Threshold
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[1] M. Xu, et al, "Analysis of line faults on HVDC transmission system considering frequency-
dependent parameters and HVDC control," Automation of Electric Power Systems, vol. 39, no. 11, pp. 
37-44, Jun. 2015
[2] B. Gustavsen, et al, "Rational approximation of frequency domain responses by vector fitting," 
IEEE Transactions on Power Delivery, vol.14, pp. 1052- 1061, Jul , 1999．



3.2 Identification of Single Phase/Pole to 
Ground Fault
Define the ratio of the absolute value of 2-pole or 3-phase voltage derivatives, and 
calculation the root-mean-square value of zero mode voltage as follows
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Based on the features of derivatives of voltage travelling wave
and zero mode voltage amplitude, fault type can be identified
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3.3 Protection Scheme
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The flowchart of the proposed protection scheme
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4.1 influence of fault conditions

Simulation model
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Fault conditions only affect the magnitude of voltage traveling
wave, but not the peak time!



4.2 influence of feeder branches
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If the protection zone has T-type feeder, the voltage amplitude
of measurement point will be 2/3 time as that of two terminal
transmission systems, but the peak time is not changed.



4.3 Configuration of MRs

Number (Choice of number of MRs)
 Peak time needs to be well detected. 
 The lower sampling frequency is used, the more MRs is needed. 

Installation location (Where MRs need to be installed?)

L1

L2

H1 H2
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1f 2f
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converter1
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converter1
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H4 R2
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R3 converter2

R4H6R5

 R1 and H1~H3 should be equipped
at least.

 To isolate fault in smallest zone,
R2~R3 and H4~H5 are needed

 R1, R4 and H1~H3 should be
equipped at least

 To isolate the fault in smallest zone,
R2, R3, R5, and H4-H6 should also
be configured

Topology 1

Topology 2

Conclusion: Relay are located at the power side, and the MRs
are located at the boundary point of the protection zone.
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5.1 Simulation model

MMC-based structure DN Simulation Model
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 DC voltage is ±7.5 kV, sampling frequency is 2MHz.
 Number of MRs at each ends of cables is 20.
 The peak time of sampling points of thresholds for relay R1,

R2, R3 are 62, 50, 45



5.2 Validation of the Fault Detection 
Criterion 

Relay
Fault  points
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6 Conclusions  

 MRs can be used as Line-Boundary to identify
internal and external faults.

 The peak time based fault detection is unaffected by
fault conditions and T-type connection topology.
Thus, it is suitable for distribution network.

 Experimental platform and test method and other
fault detection criteria still need further study.

 The papers about the method already published on
IEEE Transactions on Power Delivery [1-2]

[1] G. Song, et al, "A High Speed Single-ended Fault Detection Method for DC Distribution 
Feeder—Part II: Protection Scheme,". DOI: 10.1109/TPWRD.2019.2939051
[2] G. Song, et al, "A High Speed Single-ended Fault Detection Method for DC Distribution 
Line—Part I: Feasibility analysis of Magnetic Ring as Line Boundary,“. DOI: 10.1109/TPWR 
D. 2019. 2939022
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