

Decarbonisation of Heat/Cooling Supply Systems Using a Multi-Energy Approach

Prof. Jianzhong Wu

Professor of Multi-Vector Energy Systems Head of Department of Electrical and Electronic Engineering School of Engineering, Cardiff University, UK Co-Director of Supergen Hub on Energy Networks Co-Director of UK Energy Research Centre Associate Editor of Applied Energy (Impact Factor: 8.426)

Key Laboratory of

The 3th International Symposium on Smart Grid - Mehtods, Tools, and Technologies Jinan, Shandong, CHINA Sep. 16-19.2019

Jinan | 17th Sep 2019 Rower System Intelligent Depatch and Contri Ministry of Education, China School of Electrical Engineering, Shandong Univ

CARDIFF UNIVERSITY

PRIFYSGOL

- Cardiff University is one of the Russell Group of universities which consists of 24 leading UK universities.
- The research of the School of Engineering was ranked TOP 7 amongst UK universities in the <u>2014 Research Excellence</u> <u>Framework</u>.
- The School of Engineering is TOP in the UK for Research Impact in this 2014 REF.

MY RESEARCH

CARDIF

PRIFYSGOL

ENERGY LANDSCAPE

Environmental Sustainability

Encompasses the achievement of supply and demand-side energy efficiencies and the development of energy supply from renewable and other low-carbon sources.

Energy Equity

Accessibility and affordability of energy supply across the population.

Energy Security

The effective management of primary energy supply from domestic and external sources, the reliability of energy infrastructure, and the ability of energy providers to meet current and future demand.

- One of the most important infrastructures of the modern society.
- An unprecedented energy revolution is now ongoing globally.
- IEA predicted that smart energy market is around \$2 trillion to be invested globally in energy infrastructure every year.

ENERGY LANDSCAPE

- Heat is required to keep buildings warm, produce hot water, and to supply energy for industrial processes.
- In total, heating and cooling accounts for half of the EU's annual overall energy consumption and 59% of total EU gas consumption.
- Heat constitutes the single biggest use of energy in the UK.
 - Almost half (46%) of the final energy consumed is used to provide heat, of which around three quarters is used by households and in commercial and public buildings; the rest is used in industrial processes.
- A great deal of uncertainty regarding the deployment of lowcarbon heat technology and the Net Zero target by 2050.

ENERGY LANDSCAPE

Fuel shares for residential and nonresidential heating in selected countries

Sources: Vivid Economics & Imperial College (2018); Gross & Hanna (2019)

DECARBONISATION OF HEAT/COOLING - Challenges

DECARBONISATION OF HEAT/COOLING - Pathways

DECC Heat Pathway – Feb 2015

- by 'greening' the gas supply by shifting to hydrogen;
- electrification of the heating sector supported by low-carbon power generation;
- by potential hybrid solutions, with the bulk of heat demand, met by electricity, and peak demands met by green gas.

Three alternative pathways were investigated in a report to CCC prepared by Imperial College:

- regional decarbonisation (e.g. through cost minimisation);
- district heating;
- micro-CHP.

DECARBONISATION OF HEAT/COOLING - Coordination is Complex

Map illustrating all community groups identified in this study that have been active in the UK community energy sector since 2008

DECC 2014. Community Energy in the UK: Part 2

Sources: Contains Ordnance Survey data 2012; 2013; National Statistics data 2013; NIRSA data 2013; NRS data 2013. Crown copyright and database right. Map created using QGIS (QGIS Development Team, 2016).

UKERC and ETI 2017. Local Authority Engagement in UK Energy Systems: Highlights from Early Findings.

DECARBONISATION OF HEAT/COOLING - Electrification

Development in Electricity Sector

- A large penetration of intermittent renewable generation
- Distributed Energy Resources are dispersed in the system
- New technologies and novel business models are urgently needed to accommodate large heat demand

DECARBONISATION OF HEAT/COOLING - Green Gas

Development in Gas Sector

Gas Infrastructure Europe

- 2.2 million km transport and distribution grid in the EU
- 100 billion m³ storage capacities (≈ 1,000 TWh)
- 200 Million gas-based systems operated in household, industry, power plants, mobility in Europe

Transport

DECARBONISATION OF HEAT/COOLING - Green Gas

Development in Gas Sector

DECARBONISATION OF HEAT/COOLING – District Heating/Cooling

Development in Heat Sector

DECARBONISATION OF HEAT/COOLING – Swedish Vision

1. Combined heat and power from waste incineration

2. Heat recovery: from sewage treatment plants, the district cooling network and data centers **3.** Renewables: Combined heat and power from forest residues. Sea water for "free" cooling and heat pumps.

Source: Fortum

DECARBONISATION OF HEAT/COOLING – Danish Vision

CARDIFF

UNIVERSITY

MULTI-ENERGY APPROACH

MULTI-ENERGY APPROACH

Multí-Carríer Multi-VectorEnergy Systems Energy Hub Energy Systems Energy Systems Integration Energy Sector Energy System Coupling

CARDIE

AERDY

MULTI-ENERGY APPROACH

CARDIFF UNIVERSITY PRIFYSGOL CAERDY

Characteristics of Integrated Multi-Vector Energy Systems

MULTI-ENERGY APPROACH – Analysis Methods

Liu X, Wu J, Jenkins N, Bagdanavicius A, Combined Analysis of Electricity and Heat Networks, Applied Energy, 162, 1238-1250, Jan 2016 (ESI Highly Cited Paper)

Pirouti M, Bagdanavicius A, Wu J, Jenkins N, and Ekanayake J, Minimisation of the capital costs and energy usage in a district heating network, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, (2014)

MULTI-ENERGY APPROACH - Optimal Design and Operation

A real example of multi-vector energy systems

Case study of a University campus

MULTI-ENERGY APPROACH - Optimal Design and Operation

Optimal Operational Strategies of the Multi-Vector Energy System

Electricity Network 33kV/11kV

Network

(154mbar)

(85°C/55°C)

MULTI-ENERGY APPROACH - Flexibility Provision

MULTI-ENERGY APPROACH - Whole-Systems Approach

Whole-systems modeling

26

CARDIF

PRIFYSGOL

LATEST RESEARCH DEVELOPMENT

1

東当日

CARDIFF

Iniversity of Jouth Wales Infysgol

ABERYSTWYTH

BANGOR

fical Survey

LATEST RESEARCH DEVELOPMENT

£18m UK Energy Research Centre Phase 4 starting from 1st April 2019 for 5 years

€4m H2020 MAGNITUDE project Including 7 real case study systems

£12m ISCF investment on Energy Revolution Research Consortium (ERRC)

£36m Active Building Centre

CONCLUSIONS

- No single solution can solve all energy problems.
- Integrated multi-vector energy system is an important option for cost effective transition to a more secure, reliable, sustainable, and affordable heat/cooling supply.
- Significant opportunities from new advancements in technology and from integrating multiple energy conversion, distribution and utilisation across energy vectors and across scales.
- Setting out appropriate policy, regulation and markets will be crucial.

AERDY

THANK YOU

Prof. Jianzhong Wu

Professor of Multi-Vector Energy Systems Head of Department of Electrical and Electronic Engineering School of Engineering, Cardiff University, UK Co-Director of UK Energy Research Centre Co-Director of Supergen Hub on Energy Networks Co-Chair of INCOSE UK Energy Systems Interest Group <u>http://www.engin.cf.ac.uk/research/</u> <u>wuj5@cardiff.ac.uk</u>

