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A probability-one homotopy 
method for parameter tuning 



Standard pole assignment formulation 

• A power system is modeled as: 

X = AX + BU

Y = CU

• The standard two-phase PSS model is applied 

PSS PSS PSS PSS

PSS PSS PSS PSS

X = A X + B Y

U = C X D Y

PSS PSS

PSS PSS

 
  
 

A BD C BC
A

B C A



The probability-one homotopy theory 

• A pole assignment problem can be viewed as a root-finding 
problem as follows: 

, p px x0(A(z)) -(z) = 0 Rλ =λ R  

• Let the homotopy map be given by 
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• A nice theoretical property: for almost all z0, there exists a 
zero curve of 𝛒(𝜇, 𝐳  and the Jacobian matrix of  𝛒(𝜇, 𝐳  has 
full rank. 

 

0 0(0, )   provides an initial solution .

(1, ) ( )  is what we are looking for.
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The probability-one homotopy theory 

• Let the zero curve be parameterized by arc length t (0 ≤ 𝑡 ≤
𝑡 , 𝑡  is the point satisfying 𝜇(𝑡 = 1) 

( ( ), ( )) 0t t ρ z

2

0

0

, 1

(0) 0, (0)







   
      



 

zρ ρ

z

z

z z

• The following initial value problem of implicit ordinary 
differential equations (ODE) can be obtained: 

• To obtain this curve, the numerical integration method can be 
used to get the exact point 𝜇(𝑡  = 1. 



The probability-one homotopy theory 

• The previous PHM is a root- 
finding method, to improve the 
method, a least square 
formulation has also been 
tested. 



Implementation techniques 

• Permute the eigenvalues obtained during iterations such that 

 |𝜆𝑖
∗ − 𝜆𝑃(𝑖 |

𝑖
 is minimized. Tracking eigenvalues 

• 𝛥𝑡 = 𝛥 𝜇 𝜇   Computing step size 

• Quite often a single run cannot find the final solution.  

• If the current run does not converge, a second run can take the 
best intermediate solution as the initial guess. 

Utilizing intermediate 
solutions 

• Take a more general homotopy function: 
𝛒(𝜇, 𝐳 = 𝜇ϕ(𝐳 + (1 − 𝜇 𝐆(𝐳  . 

Choosing a suitable 
homotopy 

• Bad scaling of 𝐀  can make 𝐊 un-optimized. 

• To remedy, the gain vector 𝐊 is scaled down to the same order of 
magnitude as 𝐓1. 

Rescaling 



Simulation 

• 10 test systems (from SMIB to 3296-bus) are used. 

• The relationship between the chosen system and the most 
representative implementation techniques are summarized 
as: 

System PHM Techniques 

Single-machine-infinity bus 
System (SMIB) 

Basic procedure of the 
PHM 

4-bus, 9-bus, 57-bus and 
118-bus systems 

Eigenvalues tracking 

11-bus system Rescaling 

39-bus system 2nd derivative 

157-bus system Utilizing intermediate 
solutions 



Simulation - Advantages of PHM 

• It is shown that Newton’s method required a starting point 
which is very close to the final solution, while the PHM is 
more reliable and robust to the initial points. 

No. 
Starting point (SMIB system) PHM Newton’ 

s method 

1 T1=0.52, T2= 0.12, K=0.42 Converged Converged 

2 T1=0. 2, T2= 0.08, K=0.24 Converged Converged 

3 T1=5, T2= 0.2, K=0.7 Converged X 

4 T1=0.3, T2= 0.8, K=0.7 Converged X 

5 T1=1.2, T2= 0.2, K=1 Converged X 

6 T1=0.8, T2= 0.15, K=0.7 Converged X 



Applicability to real-world systems 

• PHM has been tested on two real-world systems and still works 
well. 

• Case 1: 1648-bus system. 3 PSS are installed and optimized: 



Applicability to real-world systems 

• Case 2: East China System (consisting of 465 machines, 3296 buses, 
4559 branches including a 1000-kV ultra-voltage transmission line) 



Application of algebraic 
geometry theory 



  SUMMARY  

• Central Theorem 

 

 

 

• Solving Power System Equations 

     

            Key Point                       
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Solving simultaneous 
multi-variate polynomial 
systems 
 

Solving a series of 
eigenvalue problems 

The multi-variate polynomial 
multiplication matrices 

CONSTURCT 



  SUMMARY   
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• 4 Steps 

The eigenvalues of 
multiplication matrices 

The solutions of the 
polynomial equations 

① Compute the Groebner basis 
② Form multiplication matrices 
③ Calculate the eigenvalues 
④ Match the eigenvalues 
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• Groebner Basis Theory 

    Consider the following polynomial equation system: 

      

      

     The solution set of the above system is called an affine variety, 
which can be written as                  . 

      

     The set of polynomials, denoted as             , is called an ideal if  

 

     Ideal              is often denoted as I, and                is a basis of I. 

 

 

1 1 2 1 1( ,..., ) ( ,..., )  ...= ( ,..., ) 0n n s nf x x f x x f x x  

1( , , )sV f f

1,..., sf f

 1 1 1 1,..., = ,..., : [ , ..., ], =1, ...,s s s i nf f p f p f p k x x i s

1,..., sf f
1{ ,..., }sf f
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• A simple example 

     Consider a system                      , whose Groebner basis under  

 

lexicographic order is as                                          .   

 

      

     To accomplish the mission, we solve for y from            . 

      

     Substituting the solution into              , we obtain the solutions 
for x.This step is called backward substitution.  

 

2

2 2
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- +2 -3 =0
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g =-5 -27 -48 +28

g =-87 +11 +14 +126
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• Quotient rings 

     The following definitions are given to illustrate some basic 
ideas.  

① Let                       be an ideal,                       , if               ,then we 
say that f and g are congruent modulo I, written as                   . 

② The equivalent class of  f modulo I is the set: 

  

③ The quotient of                 modulo I, written as                   , is 
the set of equivalence classes: 

 

1[ ,..., ]nI k x xÌ 1, [ ,..., ]nf g k x xÎ f g I- ?

modf g Iº

1[ ] { [ ,..., ] : mod }nf g k x x g f I= 魏

1[ ,..., ]nk x x 1[ ,..., ] /nk x x I

1 1[ ,..., ] / {[ ] : [ ,..., ]}n nk x x I f f k x x= ?
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④ Let                                , define the sum and product operations 
on equivalent classes as 

 

 

       Then the quotient                      is a commutative ring.  

 

• Normal Set of a Groebner basis 

     Let             denotes the leading terms of elements of I, the 
normal set of a Groebner basis is                                 . 

 

1, [ ,..., ] /nf g k x x IÎ

[ ] [ ] [ ]f g f g+ = +

[ ] [ ] [ ]f g f g? ?
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• Calculate the values of variables 

① Let ideal I denote the ideal generated by the power flow      
equations.  

 

       Let G be the Groebner basis of ideal I with respect to any  

       monomial order,                     be the corresponding normal set. 

 

       Let       denote the remainder of polynomial f on division by   

       the ordered s-tuple                        .  

1{ , , }mB t t

Gf

1{ ,..., }sG g g=
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② Notice that 

 

       If I is finite-dimensional, for any                     , we have 

 

 

       The above relationship can be expressed in a matrix form: 

 

 

       

         

 

, 1,...,i i m=

The eigenvalues of                 are exactly the roots of polynomial 
system generated by                     . 
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• A simple test system 

Table 1. Specified power flow data 

x1 y1 |V2| P2 P3 

1.05 0 1.1 3 -2 

Q3 P4 Q4 P5 Q5 

1 -2 1 -1.5 -0.75 

 

Load

Load

Load

Load
Bus1

Bus2

Bus3

Bus5

Bus4

 

Fig. 2.  The single-line diagram of a 5 bus test system 
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Fig. 3 PV curves 



The same idea applies to 
PSS parameter tuning! 
 

A eigenvalue value 

problem is a polynomial 

equation problem: 

 

Au=su 



A comparison between residue 
method and ideal phase curve 

method 



Abstract 

• PSS parameter tuning plays a key role in PSS’s effectiveness. 

• As two most common methods for stabilizer parameter 
tuning, the ideal phase curve method and the residue method 
are compared in: 

Phase compensation 

Performances in damping local-, 
inter-area modes 



Ideal phase curve method 

• To provide damping, a PSS is supposed to produce a component of 
electrical torque in phase with speed variations of the generator. 

• Thus, PSS transfer function (TF) needs to compensate for the 
phase lag between the exciter input (Vr) and the electrical torque 
(P). 

• This phase lag characteristic 𝛥𝑃(𝑗𝜔  𝛥 𝑉𝑟(𝑗𝜔  
is called the ideal phase curve. 

 



The residue method 

• Residues are a powerful tool for computing eigenvalue 
sensitivities. 
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• Hence, the residue’s (𝑹𝒊,𝒋 ) phase indicates the phase 

compensation required so that the eigenvalue moves to the left, 
its magnitude implies the influence of the generator on the 
eigenvalue. 

• Therefore, PSS’s parameters can be tuned as follows: 
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Case study 

• 2 cases are studied: 162-bus, 2383-bus. 

Case 1: 162-bus system 

• 25 machines 

• 4 unstable inter-area 
modes 

Case 2: 2383-bus system 

• 188 machines 

• 2 unstable local modes 

• 1 unstable inter-area 
mode 

• PSS model: PSS1A, PSS4B. 

• For comparison, the 2 methods are applied on the same set 
of PSSs, with PSS gains set at the same level. 

 



Case study 

• Results of PSS performances on damping different modes. 

162-bus 2383-bus 

4 Inter-area modes 2 local modes 1 inter-area mode 

Ideal Phase Curve 
Method 

X √ √ 

Residue Method √ √ √ 

• Both methods are successful for local modes. 

• However, for inter-area modes, Ideal Phase Curve Method’s 
performance seems to be “erratic”. 



Case study 

• Take a closer look at the 4 inter-area mode where Ideal Phase 
Curve Method is unsuccessful: 

Mode (162-bus) Residues (Gen 5) P-Vr phase (Gen 5) 
Optimal phase 
compensation 

54   0.02±j8.51 0.192∠85° −2.5° 95° 

56  -0.04±j4.38 0.00004∠ − 162° −1.2° −18° 

61  -0.14±j5.06 0.00066∠ − 140° −1.5° −40° 

63  -0.12±j5.53 0.00006∠40° −1.6° −140° 

• The P-Vr phases for the 4 inter-area modes are far different 
from the compensation phases indicated by residues. This 
explains why Ideal Phase Curve Method fails here. 

• On the other hand, PSSs designed by Residue Method works 
quite well on these 4 modes. 



Case study 

• Take a closer look at the 1 inter-area mode where Ideal Phase 
Curve Method is SUCCESSFUL: 

Generator 
Residues with respect 
to the inter-area mode 

Phase of PSS4B TF 
designed by Ideal 

Phase Curve Method 

Phase of PSS4B TF 
designed by Residue 

Method  
13 0.0010∠149° 2.3° 31° 
32 0.0023∠156° 0.8° 24° 
33 0.0010∠99° 69° 81° 
37 0.0016∠121° 74° 59° 

120 0.0008∠133° 0.7° 47° 
123 0.0011∠148° 0.6° 32° 

• Ideal Phase Curve Method provides less ideal compensation 
than Residue Method, but since the phase differences are 
relatively small, it still can move this inter-area mode to the 
left half plane. 



Other Comparison 

• The Ideal Phase Curve (P-Vr curve) keeps rather invariant over a 
wide range of operation conditions, since it’s determined 
primarily by the excitation system and the electrical circuits of 
the generator. (Robust) 

• Ideal Phase Curve Method faces difficulties in 
managing interactions between machines, and 
therefore is not good at damping inter-area 
modes. 

• Residue Method provides useful information 
for PSS siting, and is more effective for both 
local- and inter-area modes. (although it may 
not be that robust.) 

 



PSS in changing 
operating 
conditions 



The network expands, which introduces oscillations. 

Motivation 

The wind blows, which introduces changing conditions. 
We can strength the network, but this costs. 

Oscillating units are in different control centers! 



Overview of methodologies 

  Step1 Step2 Step3   

Simultaneous 
stabilization 

  Setup complete, multiple 
models   

Perform simultaneous 
optimization 

Works in an off-
line fashion, 
controls are 

computed (not 
designed) 

Robust 
control 

  Setup a complete 
frequency-domain model  
or a polytope model  

Perform order reduction 
first, then design a 
control 

Works only if the 
degree of 
uncertainty is 
small. 

Self-tuning 
control 

Probing is 
often needed  

Identify a low-order model Perform control design 
using pole-shifting, or 
optimal control, etc. 

Requires accurate 
identification, 
controllers 
interactions not 
clear 

1( ),..., ( )kG s G s
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