

PSS design - some recent results

Deqiang Gan College of Electrical Engineering, Zhejiang University May 18, 2015

- 1. A probability-one homotopy method for parameter tuning
- 2. Application of algebraic geometry theory
- 3. A comparison between residue method and ideal phase curve method
- 4. PSS design subject to changing operating points: an overview

A probability-one homotopy method for parameter tuning

• A power system is modeled as:

$$\dot{\mathbf{X}} = \mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{U}$$

$\mathbf{Y} = \mathbf{C}\mathbf{U}$

• The standard two-phase PSS model is applied

$$\dot{\mathbf{X}}_{PSS} = \mathbf{A}_{PSS} \mathbf{X}_{PSS} + \mathbf{B}_{PSS} \mathbf{Y}$$
$$\mathbf{\bar{A}} = \begin{bmatrix} \mathbf{A} + \mathbf{B} \mathbf{D}_{PSS} \mathbf{C} & \mathbf{B} \mathbf{C}_{PSS} \end{bmatrix}$$
$$\mathbf{B}_{PSS} \mathbf{C} & \mathbf{A}_{PSS} \end{bmatrix}$$

TT

The probability-one homotopy theory

 A pole assignment problem can be viewed as a root-finding problem as follows:

$$\phi(\mathbf{z}) = \lambda_{\mathbf{x}}(\overline{\mathbf{A}}(\mathbf{z})) - \lambda_{\mathbf{x}\mathbf{0}} = \mathbf{0}, \phi: \mathbf{R}^{p} \to \mathbf{R}^{p}$$

• Let the homotopy map be given by

$$\boldsymbol{\rho}(\boldsymbol{\mu}, \mathbf{z}) = \boldsymbol{\mu} \boldsymbol{\phi}(\mathbf{z}) + (1 - \boldsymbol{\mu})(\mathbf{z} - \mathbf{z}_0)$$

 $\rho(0, \mathbf{z}) = \mathbf{z} - \mathbf{z}_0$ provides an initial solution \mathbf{z}_0 .

 $\rho(1, \mathbf{z}) = \phi(\mathbf{z})$ is what we are looking for.

A nice theoretical property: for almost all z₀, there exists a zero curve of ρ(μ, z) and the Jacobian matrix of ρ(μ, z) has full rank.

The probability-one homotopy theory

• Let the zero curve be parameterized by arc length $t (0 \le t \le \overline{t}, \overline{t}$ is the point satisfying $\mu(t) = 1$)

 $\boldsymbol{\rho}(\boldsymbol{\mu}(t), \mathbf{z}(t)) = 0$

• The following initial value problem of implicit ordinary differential equations (ODE) can be obtained:

$$\begin{bmatrix} \frac{\partial \mathbf{\rho}}{\partial \mathbf{z}} & \frac{\partial \mathbf{\rho}}{\partial \mu} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{z}} \\ \dot{\mu} \end{bmatrix} = 0$$
$$\| \dot{\mu}, \dot{\mathbf{z}} \|_2 = 1$$
$$\mu(0) = 0, \mathbf{z}(0) = \mathbf{z}_0$$

• To obtain this curve, the numerical integration method can be used to get the exact point $\mu(\bar{t}) = 1$.

The probability-one homotopy theory

The previous PHM is a rootfinding method, to improve the method, a **least square** formulation has also been tested.

Tracking eigenvalues	• Permute the eigenvalues obtained during iterations such that $\sum_{i} \lambda_i^* - \lambda_{P(i)} $ is minimized.
Computing step size	• $\Delta t = \Delta \mu / \dot{\mu}$
Utilizing intermediate solutions	 Quite often a single run cannot find the final solution. If the current run does not converge, a second run can take the best intermediate solution as the initial guess.
Choosing a suitable homotopy	• Take a more general homotopy function: $\rho(\mu, \mathbf{z}) = \mu \phi(\mathbf{z}) + (1 - \mu)\mathbf{G}(\mathbf{z})$.
Rescaling	 Bad scaling of A can make K un-optimized. To remedy, the gain vector K is scaled down to the same order of magnitude as T₁.

Simulation

- 10 test systems (from SMIB to 3296-bus) are used.
- The relationship between the chosen system and the most representative implementation techniques are summarized as:

System	PHM Techniques
Single-machine-infinity bus System (SMIB)	Basic procedure of the PHM
4-bus, 9-bus, 57-bus and 118-bus systems	Eigenvalues tracking
11-bus system	Rescaling
39-bus system	2 nd derivative
157-bus system	Utilizing intermediate solutions

Simulation - Advantages of PHM

 It is shown that Newton's method required a starting point which is very close to the final solution, while the PHM is more reliable and robust to the initial points.

COLLEGE OF ELECTRICAL ENGINEERING, ZHEJIANG UNIVERSITY

Applicability to real-world systems

- PHM has been tested on two real-world systems and still works well.
- Case 1: 1648-bus system. 3 PSS are installed and optimized:

Applicability to real-world systems

• **Case 2: East China System** (consisting of 465 machines, 3296 buses, 4559 branches including a 1000-kV ultra-voltage transmission line)

Application of algebraic geometry theory

- Form multiplication matrices
 Calculate the eigenvalues
- ④ Match the eigenvalues

• Groebner Basis Theory

Consider the following polynomial equation system:

$$f_1(x_1,...,x_n) = f_2(x_1,...,x_n) = ...= f_s(x_1,...,x_n) = 0$$

The solution set of the above system is called an affine variety, which can be written as $V(f_1, \dots, f_s)$.

The set of polynomials, denoted as $\langle f_1, ..., f_s \rangle$, is called an ideal if $\langle f_1, ..., f_s \rangle = \{ p_1 f_1, ..., p_s f_s : p_i \in k[x_1, ..., x_n], i=1, ..., s \}$ Ideal $\langle f_1, ..., f_s \rangle$ is often denoted as *I*, and $\{ f_1, ..., f_s \}$ is a basis of *I*.

A simple example

Consider a system $\begin{cases} 3x^2 - 2xy - y = 0 \\ -x^2 + 2y^2 - 3x = 0 \end{cases}$, whose Groebner basis under

exicographic order is as $\begin{cases} g_1 = -5y^2 - 27y - 48y^3 + 28y^4 \\ g_2 = -87y^2 + 11y + 14y^3 + 126x \end{cases}$

To accomplish the mission, we solve for y from $g_1 = 0$.

Substituting the solution into $g_2 = 0$, we obtain the solutions for x. This step is called backward substitution.

LISBON 2013

• Quotient rings

The following definitions are given to illustrate some basic ideas.

- Let I ì k[x₁,...,x_n] be an ideal, f,g î k[x₁,...,x_n], iff g? I, then we say that f and g are congruent modulo I, written as f ° g mod I.
 The equivalent class of f modulo I is the set:
 [f] = {g 魏[x₁,...,x_n]: g f mod I}
- 3 The quotient of $k[x_1,...,x_n]$ modulo *I*, written as $k[x_1,...,x_n]/I$, is the set of equivalence classes:

 $k[x_1,...,x_n]/I = \{[f]: f? k[x_1,...,x_n]\}$

4 Let $f, g \hat{I} k[x_1, ..., x_n] / I$, define the sum and product operations on equivalent classes as

[f] + [g] = [f + g]

[f]?[g] [f?g]

Then the quotient $k[x_1,...,x_n]/I$ is a commutative ring.

• Normal Set of a Groebner basis

Let LT(I) denotes the leading terms of elements of I, the normal set of a Groebner basis is $\{x^a : x^a \mid \mathbb{R} \mid LT(I)\}$

system generated by $G = \{g_1, ..., g_s\}$.

2015/9/2

• A simple test system

Fig. 2. The single-line diagram of a 5 bus test system

<i>x</i> ₁	<i>y</i> ₁	V ₂	<i>P</i> ₂	<i>P</i> ₃
1.05	0	1.1	3	-2
Q_3	P ₄	Q_4	P ₅	Q_5
1	-2	1	-1.5	-0.75

Table 1. Specified power flow data

The same idea applies to PSS parameter tuning!

A eigenvalue value problem is a polynomial equation problem:

Au=su

A comparison between residue method and ideal phase curve method

Abstract

- PSS parameter tuning plays a key role in PSS's effectiveness.
- As two most common methods for stabilizer parameter tuning, the *ideal phase curve method* and *the residue method* are compared in:

Phase compensation

Performances in damping local-, inter-area modes

Ideal phase curve method

- To provide damping, a PSS is supposed to produce a component of electrical torque in phase with speed variations of the generator.
- Thus, PSS transfer function (TF) needs to compensate for the phase lag between the exciter input (Vr) and the electrical torque (P).
- This phase lag characteristic $\Delta P(j\omega)/\Delta Vr(j\omega)$ is called the *ideal phase curve*.

Ideal

phase

curve method

The residue method

Residues are a powerful tool for computing eigenvalue sensitivities.

$$\frac{\partial \lambda_j}{\partial K_{PSSi}} = R_{i,j} \cdot \frac{\partial G_{PSS}(s, K_{PSSi})}{\partial K_{PSSi}} \bigg|_{s=\lambda_j}$$

- Hence, the residue's (R_{i,j}) phase indicates the phase
 compensation required so that the eigenvalue moves to the left,
 its magnitude implies the influence of the generator on the eigenvalue.
- Therefore, PSS's parameters can be tuned as follows:

$$\min \sum \mathbf{w}_{j} \cdot \operatorname{Re}(\Delta \lambda_{j})$$
$$\operatorname{Re}(\Delta \lambda_{j}) = \operatorname{Re}\left(\frac{\partial \lambda_{j}}{\partial K_{PSSi}} \cdot K_{PSSi}\right)$$

Residue method

• 2 cases are studied: 162-bus, 2383-bus.

Case 1: 162-bus system

- 25 machines
- 4 unstable inter-area modes

Case 2: 2383-bus system

- 188 machines
- 2 unstable local modes
- 1 unstable inter-area mode

- PSS model: PSS1A, PSS4B.
- For comparison, the 2 methods are applied on the same set of PSSs, with PSS gains set at the same level.

• Results of PSS performances on damping different modes.

	162-bus	2383-bus	
	4 Inter-area modes	2 local modes	1 inter-area mode
Ideal Phase Curve Method	X	V	V
Residue Method	V	V	V

- Both methods are **successful** for **local modes**.
- However, for inter-area modes, Ideal Phase Curve Method's performance seems to be "erratic".

 Take a closer look at the 4 inter-area mode where Ideal Phase Curve Method is unsuccessful:

Mode (162-bus)	Residues (Gen 5)	P-Vr phase (Gen 5)	Optimal phase compensation
54 0.02±j8.51	0.192∠85°	-2.5°	95°
56 -0.04±j4.38	0.00004∠ – 162°	-1.2°	-18°
61 -0.14±j5.06	0.00066∠ – 140°	-1.5°	-40°
63 -0.12±j5.53	0.00006∠40°	-1.6°	-140°

- The P-Vr phases for the 4 inter-area modes are far different from the compensation phases indicated by residues. This explains why *Ideal Phase Curve Method* fails here.
- On the other hand, PSSs designed by *Residue Method* works quite well on these 4 modes.

 Take a closer look at the 1 inter-area mode where Ideal Phase Curve Method is SUCCESSFUL:

Generator	Residues with respect to the inter-area mode	Phase of PSS4B TF designed by Ideal Phase Curve Method	Phase of PSS4B TF designed by Residue Method
13	0.0010∠149°	2.3°	31°
32	0.0023∠156°	0.8°	24°
33	0.0010∠99°	69°	81°
37	0.0016∠121°	74°	59°
120	0.0008∠133°	0.7°	47°
123	0.0011∠148°	0.6°	32°

 Ideal Phase Curve Method provides less ideal compensation than Residue Method, but since the phase differences are relatively small, it still can move this inter-area mode to the left half plane.

Other Comparison

- The *Ideal Phase Curve (P-Vr curve)* keeps rather invariant over a wide range of operation conditions, since it's determined primarily by the excitation system and the electrical circuits of the generator. (Robust)
- Ideal Phase Curve Method faces difficulties in managing interactions between machines, and therefore is not good at damping inter-area modes.
- Residue Method provides useful information for PSS siting, and is more effective for both local- and inter-area modes. (although it may not be that robust.)

ldeal phase curve <u>method</u>

> Residue method

PSS in changing operating conditions

Motivation

The network expands, which introduces oscillations. The wind blows, which introduces changing conditions. We can strength the network, but this costs.

Oscillating units are in different control centers!

	Step1	Step2	Step3	
Simultaneous stabilization		Setup complete, multiple models $G_1(s),,G_k(s)$	Perform simultaneous optimization	Works in an off- line fashion, controls are computed (not designed)
Robust control		Setup a complete frequency-domain model or a polytope model $M(s) - \Delta(s), \ \Delta(s)\ \le 1$	Perform order reduction first, then design a control	Works only if the degree of uncertainty is small.
Self-tuning control	Probing is often needed	Identify a low-order model $A(z^{-1})y(k) = B(z^{-1})u(k) + e(k)$	Perform control design using pole-shifting, or optimal control, etc.	Requires accurate identification, controllers interactions not clear

Sponsors:

Alstom, China Technology Center

✓ North China Electric Power Research Institute

