The 2nd International Symposium on Smart Grid — Methods, Tools, and Technologies Weihai,Shandong,CHINA July 4-7,2017

+12.

Robust Analysis of Smart Distribution Networks

Prof. Jianzhong Wu

PRIFYSGOL

Professor of Multi-Vector Energy Systems Subject Editor of Applied Energy (IF 7.182) Cardiff University, UK 6th July 2017

 Various methods are being investigated for better management of DERs and the distribution networks
2/23

Robust State Estimation

- State estimation is used to clean up errors in measurements and estimate the system state, and the data set is processed using statistical estimation techniques
- State estimation techniques are widely used in transmission systems where redundant measurements are available (i.e. the system is overdetermined)
- For under-determined distribution systems, a large number of pseudo measurements have to be used as input to the distribution state estimator

Difficulties in distribution state estimation

- The pattern of distribution load consumption is more dynamic
- The trend of the load variation is less apparent
- There are usually larger errors and more bad data in pseudo and real-time measurements

Machine Learning Component

Robust Stator Estimator

Wu J, He Y, Jenkins N, A robust state estimator for medium voltage distribution networks, *IEEE Trans on Power Systems*, 28(2), (2013), 1008-1016

9/23

CARDIFF

Wu J, He Y, Jenkins N, A robust state estimator for medium voltage distribution networks, *IEEE Trans on Power Systems*, 28(2), (2013), 1008-1016

Al-Wakeel, A., Wu, J. and Jenkins, N. State estimation of medium voltage distribution networks using smart meter measurements. Applied Energy, 184, 207-218, 2016

Al-Wakeel, Wu J, Jenkins N, K-means based load estimation of domestic smart meter measurements, Applied Energy, 194, 333-342, 2017

10/23

Robust State Estimation

CARDIFF

Spatial-Temporal Model

Expect a large EV penetration

- Decarbonisation of the transport sector
- Reduce the reliance on imported fossil fuel

Impact on electric power networks

- New electricity demand
- Voltage profile and branch current
- System frequency
- System reliability, stability and security

Characteristics

- Mobility
- Spatial temporal distribution
- Various charging strategies

Exiting methods

- Worst-case-scenario based
- Probabilistic and fuzzy based

EU FP7 MERGE project: Mobile Energy

CARDIF

Mu Y. Wu J., Jenkins N., H. Jia, C. Wang, A Spatial-Temporal Model for Grid Impact Analysis of Plug-in Electric Vehicles, *Applied Energy*, 114, (2014), 456-465

Grid Impact Analysis of a Large Penetration of EVs

Mu Y. Wu J., Jenkins N., H. Jia, C. Wang, A Spatial-Temporal Model for Grid Impact Analysis of Plug-in Electric Vehicles, *Applied Energy*, 114, (2014), 456-465

Mu Y, Wu J, Ekanayake J, Jenkins N, Primary frequency response from electric vehicles in the Great Britain power system, *IEEE Trans on Smart Grid*, 4(2), (2013), 1142-1150

Spatial-Temporal Model

Dong X, Mu Y, Jia H, Wu J, Yu X, Planning of fast EV charging stations on a round freeway, *IEEE Trans on Sustainable Energy*, 7(4): 1452-1461, (2016) 16/23

Statically Similar Networks

 Objective: To develop a statistical assessment tool for energy distribution networks, in order to achieve robust and generalised conclusions.

Key features

- Capturing essence of real networks using a few statistical parameters.
 - Ability to generate many realistic, random test-networks which are statistically similar in terms of the selected topological and technical features and decisive for a given network study.
- The ability of performing studies on many such statistically similar networks to come up with statistically robust conclusions.

Applications

- To conduct network studies on specific real-world/future networks with limited availability of topological and technical information.
- To provide generalised conclusions on the behaviour of different types of networks (rural/semi-rural/suburban/urban) under different scenarios.
 - To enable robust network planning and design.

CARDIFF

Statically Similar Networks

Statistical assessment tool for distribution networks

19/23

20/23

Some topological properties are able to clearly characterise the topological differences of urban and sub-urban networks

21/23

Abeysinghe S, Wu J, Soorihabandara M, Abeysekera M, Xu T, Wang C, Topological properties of medium voltage electricity distribution networks, *Applied Energy*, Accepted, 2017.

- Due to the widespread use of distributed energy resources, the behaviour of distribution networks will become increasingly uncertain, which will lead to operational and planning difficulties.
- Robust analysis methods of smart distribution networks will play a critical role in the development of smart distribution networks.
- Close-loop robust state estimation with machine learning capability, spatial-temporal model, and statistically similar network generator are able to to better tackle information uncertainties, gaps and errors, from different angles, thus support distribution network operation.

Thank You!

Prof. Jianzhong Wu

Professor of Multi-Vector Energy Systems Subject Editor of Applied Energy (IF 7.182) Email: WuJ5@cardiff.ac.uk

+12.