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Background

 A large penetration of intermittent renewable generation

 Distributed Energy Resources are dispersed in the system 

 Various methods are being investigated for better management of DERs and 

the distribution networks
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Background

Lack of sensors, communication systems and control 

equipment, therefore limited  real-time monitoring and 

control below the primary substations  

80%-90% power 

outages, with high 

power losses

Distribution networks

“Worst case scenario” and deterministic methods are 

widely used for analysis of distribution networks. 
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Robust State Estimation

 State estimation is used to clean up errors in

measurements and estimate the system state, and the

data set is processed using statistical estimation

techniques

 State estimation techniques are widely used in

transmission systems where redundant

measurements are available (i.e. the system is over-

determined)

 For under-determined distribution systems, a large

number of pseudo measurements have to be used as

input to the distribution state estimator
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Robust State Estimation

Difficulties in distribution state estimation
- The pattern of distribution load consumption is

more dynamic

- The trend of the load variation is less apparent

- There are usually larger errors and more bad data

in pseudo and real-time measurements

State 

Estimation
Data Input
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Robust State Estimation
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Robust State Estimation
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Wu J, He Y, Jenkins N, A robust state estimator for medium voltage distribution networks, 

IEEE Trans on Power Systems, 28(2), (2013), 1008-1016 9/23



Robust State Estimation

Wu J, He Y, Jenkins N, A robust state estimator for medium voltage distribution networks, IEEE Trans on Power Systems, 28(2), (2013), 1008-1016

Al-Wakeel, A., Wu, J. and Jenkins, N. State estimation of medium voltage distribution networks using smart meter measurements. Applied Energy, 184, 207-

218, 2016 
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Spatial-Temporal Model 

 Expect a large EV penetration

 Decarbonisation of the transport sector

 Reduce the reliance on imported fossil fuel

 Impact on electric power networks

 New electricity demand

 Voltage profile and branch current

 System frequency

 System reliability, stability and security

 Characteristics

 Mobility

 Spatial temporal distribution

 Various charging strategies

 Exiting methods

 Worst-case-scenario based

 Probabilistic and fuzzy based 

EU FP7 MERGE project: Mobile Energy 

Resources in Grids of Electricity 

2010-2011 

Grid Economics, Planning 

and Business Models for 

Smart Electric Mobility

2014-2016

2011-2015
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Mu Y. Wu J., Jenkins N., H. Jia, C. Wang, A Spatial-Temporal Model for Grid Impact Analysis of Plug-in Electric 

Vehicles, Applied Energy, 114, (2014), 456-465 14/23
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Grid Impact Analysis of a Large Penetration of EVs

Mu Y. Wu J., Jenkins N., H. Jia, C. Wang, A Spatial-Temporal Model for Grid 
Impact Analysis of Plug-in Electric Vehicles, Applied Energy, 114, (2014), 456-465

Mu Y, Wu J, Ekanayake J, Jenkins N, Primary frequency response from electric 
vehicles in the Great Britain power system, IEEE Trans on Smart Grid, 4(2), 
(2013), 1142-1150

Spatial-Temporal Model 
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Spatial-Temporal Model 
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freeway, IEEE Trans on Sustainable Energy, 7(4): 1452-1461, (2016)
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Statically Similar Networks

 Objective: To develop a statistical assessment tool for energy distribution
networks, in order to achieve robust and generalised conclusions.

 Key features  Applications

 Capturing essence of real 

networks using a few statistical 

parameters.

 Ability to generate many 

realistic, random test-networks 

which are statistically similar 

in terms of the selected 

topological and technical 

features and decisive for a 

given network study. 

 The ability of performing 

studies on many such 

statistically similar networks to 

come up with statistically 

robust conclusions.

 To conduct network studies on 

specific real-world/future 

networks with limited 

availability of topological and 

technical information. 

 To provide generalised 

conclusions on the behaviour of 

different types of networks 

(rural/semi-rural/sub-

urban/urban) under different 

scenarios.

 To enable robust network 

planning and design.
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Statically Similar Networks

Statistical assessment tool for distribution networks
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Statically Similar Networks
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Statically Similar Networks

Some topological properties are able to clearly characterise the topological

differences of urban and sub-urban networks

Abeysinghe S, Wu J, Soorihabandara M, Abeysekera M, Xu T, Wang C, Topological properties of medium voltage electricity

distribution networks, Applied Energy, Accepted, 2017. 21/23



Summary

 Due to the widespread use of distributed energy resources, the

behaviour of distribution networks will become increasingly

uncertain, which will lead to operational and planning difficulties.

 Robust analysis methods of smart distribution networks will play a

critical role in the development of smart distribution networks.

 Close-loop robust state estimation with machine learning

capability, spatial-temporal model, and statistically similar network

generator are able to to better tackle information uncertainties,

gaps and errors, from different angles, thus support distribution

network operation.
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